
CIS 431/531
Intro to Parallel Computing
Fork-Join Model and OpenMP

Fork-Join

Fundamental way of expressing concurrency within a computation

Fork is called by a thread (parent) to create a new thread (child) of
concurrency

● Parent continues after the fork operation
● Child begins operation separate from the parent
● Fork creates concurrency

Join is called by both the parent and child

● Child joins after it finishes
● Parent waits until child joins
● Join removes concurrency

Fork-Join

Fork-join dependency

● Parent must join with its forked children
● Forked children with the same parent can join with parent in

any order

Fork-join DAG

● What does it look like?

Fork-Join

Fork-join dependency

● Parent must join with its forked children
● Forked children with the same parent can join with parent in

any order

Fork-join DAG

● What does it look like?

Parent

Parent

Child

Fork

Join

Fork-join model comes from basic forms of creating processes and
threads in the OS

● Forking a child process from a parent process
● fork() - creates a new child process
● Process state of parent is copied to child process

● Parent process continues to next PC on fork() return
● Child process also starts execution at the next PC
● Parent process can call waitpid() for a particular child process

● If child process has called join(), parent continues
● If child process has not called join(), parent blocks/waits

Fork-Join in
Unix

Fork-Join in
Unix

Fork-Join “Hello World” in Unix

POSIX
Threads

Fork-Join in POSIX standard multi-threading interface

For general multi-threaded concurrent programming

(Largely) independent across implementations/platforms

Provides primitives for

Thread creation and management

Synchronization

POSIX
Threads

Thread creation
#include <pthread.h>

int pthread_create(

 pthread_t *thread_id,

 const pthread_attr_t *attribute,

 void *(*thread_function)(void *),void *arg);

Thread termination
void pthread_exit(void *status)

Implicitly called when function returns

Thread join

int pthread_join(

 pthread_t thread_id,

 void **status);

POSIX
Threads

Example

void *func(void *){

 …

}

pthread_t id;

int X;

…

pthread_create(&id, NULL, func, &X);

…

pthread_join(id, NULL);

…

POSIX
Threads

fork() vs.
pthreads

Fork()

● Both parent and child executes the next instruction/PC
● Two identical copies of the address space/code/stack are

created

pthreads

● Child thread executes the provided function
● Child thread will share open files/signal handlers/working

directory with the parent, but get its own stack/registers

Think of the fork as creating an identical copy that executes like the
parent, whereas pthread shares data with the parent and operates
as an independent worker (doing what the parent tells it to do).

Other
Fork-Join
Programming
Model

Cilk Plus

cilk_spawn B(); // Fork

C();

cilk_sync(); // Join

B() is executed by the child thread

C() is executed by the parent thread

Other
Fork-Join
Programming
Model

OpenMP

Threading Building Blocks (TBB)

OpenACC

Questions?

What is
OpenMP?

An API for writing multi-threaded (parallel) applications

● Set of compiler directives and library routines
● Greatly simplifies writing multi-threaded code (vs. pthreads)
● Standardizes last 30 years of SMP programming practice

Goals of OpenMP

● Standardized
● Provide a parallelization standard among a variety of shared

memory architectures
● Defined & endorsed by a number of hardware and software

vendors
● Lean

● Only requires a few lines of directives to parallelize your code
● Easy to use

● Simple concept (as we will see later)
● Allows both fine-grained and coarse-grained parallelism

● Portable
● Supported by most major vendors

OpenMP
Stack

OpenMP
Features

Designed for multi-processor with shared memory (SMP)

Works with MPI (Message Passing Interface) for distributed system

Hybrid Parallelism (e.g., MPI+X)

Parallelism is achieved through threads

Thread is the smallest unit of execution (also by the OS)

Explicit Parallelism

User has full control over parallelization

OpenMP
Model

Fork-Join Model on OpenMP

● All OpenMP program begins as a single process (i.e., the
master thread)

● Master thread executes alone (sequentially) until a parallel
region is encountered
● The program then forks
● Code in the parallel region is executed by multiple threads
● The thread joins when the parallel region is completed
● The number of parallel regions and threads working on them

can be arbitrary
● Within the parallel region

● Data (e.g., variables) are shared by default
● Scope of the data can be changed
● Other parallel regions can exist (nested parallelism)
● Number of threads can change (depends on vendor support)

OpenMP
Model

Implicit barrierFork Join

OpenMP
Syntax

Most OpenMP constructs are compiler directives

#pragma omp <directive> [clause …]

#pragma omp parallel default(shared) private(a, b)

Library Functions

Thread queries (number of threads, thread ID, etc.)

int omp_get_num_threads(void)

Environment Variables

Setting number of threads, affinity, etc.

export OMP_NUM_THREADS=8

Why would you want to use environment variables?

Example -
Hello World

void main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

Example -
Hello World

#include <omp.h>

void main()

{

#pragma omp parallel

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

}

gcc -fopenmp main.c

-qopenmp for Intel
compilers (e.g., icc)

-mp for PGI compiler

Example -
Hello World

#include <omp.h>

void main()

{

#pragma omp parallel

{

 int ID = omp_get_thread_num();

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

}

Example -
Hello World

#include <omp.h>

void main()

{

int ID;

#pragma omp parallel

{

 ID = omp_get_thread_num();

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

}

● Within the parallel region
● Data (e.g., variables) are

shared by default

Problem?

One possible output (the code will behave unpredictably):

● Race condition will occur from unintended sharing of
variables.

● This is why “join” exists - synchronization to prevent race
condition (it will not help in this case).

● However, synchronization is expensive - it is best to
avoid/minimize synchronization

 hello(0) world(3)
 hello(3) world(3)
 hello(1) world(3)
 hello(2) world(3)

Example -
Hello World

Example -
Hello World

#include <omp.h>

void main()

{ int ID = 1;

#pragma omp parallel private(ID)

{

 ID = omp_get_thread_num();

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

}

Example -
Hello World

#include <omp.h>

void main()

{

int ID = 1;

#pragma omp parallel private(ID)

{

 ID = omp_get_thread_num();

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

 printf(“%d\n”, ID);

}

void *perform_work(void *arguments)

{

int index = *((int *)arguments);

 …

}

 pthread_t threads[NUM_THREADS];
 int thread_args[NUM_THREADS];

 for (i = 0; i < NUM_THREADS; i++) {

 printf("IN MAIN: Creating thread %d.\n", i);

 thread_args[i] = i;

 result_code = pthread_create(&threads[i], NULL, perform_work,

&thread_args[i]);

 assert(!result_code);

 }

 for (i = 0; i < NUM_THREADS; i++) {

 result_code = pthread_join(threads[i], NULL);

 assert(!result_code);

 printf("IN MAIN: Thread %d has ended.\n", i);

 }

Using pthreads

Work-Sharing
Constructs

Divides the work in the code region between the threads (vs. all
threads executing the entirety of the code region)

Types of work-sharing constructs

● Do/For
● Sections
● Single

Work-Sharing
- Do/For

Share iterations of the loop across the
threads (i.e., data parallelism)

#pragma omp parallel

{

 #pragma omp for
 for(int i = 0; i < 100; i++) {
 x[i] = 1;
 }
}

OR

#pragma omp parallel for
for(int i = 0; i < ARR_SIZE; i++) {
 x[i]++;
}

There is an implicit barrier at the end of the
loop

Work-Sharing
- Sections

Each section can do different parts of the
code section (assuming they can be done
independently) or completely different work
altogether

 #pragma omp parallel
 {
 #pragma omp sections
 {
 #pragma omp section
 {
 for(int i = 0; i < ARR_SIZE/4; i++) {
 x[i] = 1;
 }
 }

 …
 #pragma omp section
 {
 for(int i = (ARR_SIZE/4)*3; i <
ARR_SIZE; i++) {
 x[i] = 1;
 }
 }
 }
 }

This code has a similar effect as using 4
threads with parallel for

Work-Sharing
- Single

Only 1 thread in the team executes the code
section

Why??

● Might be useful when executing code
sections that are not thread safe (e.g.,
IO)

#pragma omp parallel
{

 #pragma omp single

 {

 some code…

 }

}

Only construct that does not allow “parallel
single”

Work-Sharing
- Master

Only 1 thread in the team executes the code section

● It is the master thread that executes this section and every other
thread skips it

● There is no implicit barrier associated with this directive

OpenMP -
Synchronization

Synchronization is used to impose order constraints and to protect
access to shared data

Critical

Atomic

Barrier

Ordered

Locks

OpenMP -
Synchronization

int sum = 0;
#pragma omp parallel
{
 sum += omp_get_thread_num();
}
printf("sum = %d\n", sum);

What would happen if you ran this with 16 threads?

OpenMP -
Synchronization

Critical section

● Mutual exclusion - only one thread at a time can enter the
critical region

int sum = 0;
#pragma omp parallel
{
 #pragma omp critical
 sum += omp_get_thread_num();
}
printf("sum = %d\n", sum);

OpenMP -
Synchronization

Atomic variables

● Mutual exclusion - but only to the memory location (i.e., sum
in this example).

int sum = 0;
#pragma omp parallel
{
 #pragma omp atomic
 sum += omp_get_thread_num();
}
printf("sum = %d\n", sum);

Questions?

Exercise - Pi
How would you calculate Pi in parallel?

● Hint - What is Pi used for?

Exercise - Pi
How would you calculate Pi in parallel?

● Hint - What is Pi used for? Calculate the area of a circle
● In Calculus, what is used to calculate that?

Exercise - Pi
How would you calculate Pi in parallel?

● Hint - What is Pi used for? Calculate the area of a circle
● In Calculus, what is used to calculate that? Integration -> area

under a curve

Exercise - Pi

Estimate Pi using an integral of (sqrt(1-x^2)) from -1 to 1

y = √(1 - x2)

Exercise - Pi

Estimate Pi using an integral of (sqrt(1-x^2)) from -1 to 1

Estimate as sum of rectangular areas

y = √(1 - x2)

Exercise - Pi

Estimate Pi using an integral of (sqrt(1-x^2)) from -1 to 1

Estimate as sum of rectangular areas

How would you make this more accurate?

y = √(1 - x2)

Exercise - Pi

Estimate Pi using an integral of (sqrt(1-x^2)) from -1 to 1

Estimate as sum of rectangular areas

How would you make this more accurate?

y = √(1 - x2)

Homework -
Pi

Use the Monte Carlo Method (i.e., random numbers)

● Throw darts at the square (in green)
● Chance of falling in the circle is proportional to the ratio of

areas (circle vs. square)
● Compute Pi by randomly choosing points and counting the

fraction that falls in the circle.

Skeleton Code

1. Goto https://bitbucket.org/jeewhanchoi/uoregon-cis431531-f23/src/master/
2. Clone the repo and copy the homework01 directory to your

personal repo
3. Read the READ.ME for instructions
4. Do the homework and push the changes to your personal repo

https://bitbucket.org/jeewhanchoi/uoregon-cis431531-f23/src/master/

Questions?

