
CIS 431/531
Intro to Parallel Computing
OpenMP II

1. (10 minutes)

1a. Draw a DAG for the given instruction stream

1b. Use register coloring/renaming to eliminate as many
dependencies from the DAG as possible

i1. R1 <- 34

i2. R2 <- 56

i3. R1 <- R1 + R5

i4. R5 <- R1 - R2

i5. R5 <- R1 + R2

Quiz

2. (5 minutes)

Given the following architecture, what are the peak and sustained
throughputs (i.e., instructions per cycle)?

If they are different, explain why

Questions?

Previous
Lecture

Fork-Join Model

OS fork()

pthreads

OpenMP

Work-sharing constructs do/for, sections, and single

This Lecture

OpenMP

Tasks

Synchronization

Data scope

Directives

OpenMP
Model

Implicit barrier

OpenMP
Syntax

Most OpenMP constructs are compiler directives

#pragma omp <directive> [clause …]

#pragma omp parallel default(shared) private(a, b)

Library Functions

Thread queries (number of threads, thread ID, etc.)

int omp_get_num_threads(void)

Environment Variables

Setting number of threads, affinity, etc.

export OMP_NUM_THREADS=8

Work-Sharing
Constructs

Divides the work in the code region between the threads (vs. all
threads executing the entirety of the code region)

Types of work-sharing constructs

● Do/For
● Sections
● Single

Work-Sharing
- Do/For

Share iterations of the loop across the threads
(i.e., data parallelism)

#pragma omp parallel

{

 #pragma omp for
 for(int i = 0; i < ARR_SIZE; i++) {
 x[i] = 1;
 }
}
OR
#pragma omp parallel for
for(int i = 0; i < ARR_SIZE; i++) {
 x[i]++;
}

Also an implicit barrier at the end of the loop

Work-Sharing
- Sections

Each section can do different parts of the
code section (assuming they can be done
independently) or completely different work
altogether

 #pragma omp parallel
 {
 #pragma omp sections
 {
 #pragma omp section
 {
 for(int i = 0; i < ARR_SIZE/4; i++) {
 x[i] = 1;
 }
 }

 …
 #pragma omp section
 {
 for(int i = (ARR_SIZE/4)*3; i <
ARR_SIZE; i++) {
 x[i] = 1;
 }
 }
 }
 }

This code has a similar effect as using 4
threads with parallel for

Work-Sharing
- Single

Only 1 thread in the team executes the code
section

Why??

● Might be useful when executing code
sections that are not thread safe (e.g.,
IO)

#pragma omp parallel
{

 #pragma omp single

 {

 some code…

 }

}

Only construct that does not allow “parallel
single”

Questions?

OpenMP
Tasks

So far we’ve seen data-parallel computation

SIMD

OpenMP do-for construct

etc.

What about DAGs with independent tasks, where each task is more
than a simple instruction (i.e., task-based parallelism)?

OpenMP can also creates a set of tasks -

● When a thread encounters a task construct, a new task is
generated

● The moment of execution of the task is up to the runtime
system

● Execution can either be immediate or delayed
● Completion of a task can be enforced through task

synchronization

OpenMP
Tasks

OpenMP
Tasks -
Example

You want some code that prints either “A race car” or “A car race” -
how would you do this using OpenMP?

int main()

{

 printf("A ");

 printf("race ");

 printf("car ");

 printf("\n");

 return(0);

}

OpenMP
Tasks -
Example

You want some code that prints either “A race car” or “A car race” -
how would you do this using OpenMP?

int main()

{

 #pragma omp parallel

 {

 printf("A ");

 printf("race ");

 printf("car ");

 }

 printf("\n");

 return(0);

}

OpenMP
Tasks -
Example

int main()

{

 #pragma omp parallel

 {

 #pragma omp single

 {

 printf("A ");

 printf("race ");

 printf("car ");

 }

 }

 printf("\n");

 return(0);

}

OpenMP
Tasks -
Example

int main()

{

 #pragma omp parallel

 {

 #pragma omp single

 {

 printf("A ");

 #pragma omp task

 { printf("race "); }

 #pragma omp task

 { printf("car "); }

 }

 }

 printf("\n");

 return(0);

}

OpenMP
Tasks -
Example

You want some code that prints either “A race car is fun to watch” or
“A car race is fun to watch” - how would you do this using OpenMP?
int main()

{

 #pragma omp parallel

 {

 #pragma omp single

 {

 printf("A ");

 #pragma omp task

 { printf("race "); }

 #pragma omp task

 { printf("car "); }

 printf(“is fun to watch”);

 }

 }

 printf("\n");

 return(0);

}

OpenMP
Tasks -
Example

You want some code that prints either “A race car is fun to watch” or
“A car race is fun to watch” - how would you do this using OpenMP?
int main()

{

 #pragma omp parallel

 {

 #pragma omp single

 {

 printf("A ");

 #pragma omp task

 { printf("race "); }

 #pragma omp task

 { printf("car "); }

 }

 printf(“is fun to watch”);

 }

 printf("\n");

 return(0);

}

OpenMP
Tasks -
Example

You want some code that prints either “A race car is fun to watch” or
“A car race is fun to watch” - how would you do this using OpenMP?
int main()

{

 #pragma omp parallel

 {

 #pragma omp single

 {

 printf("A ");

 #pragma omp task

 { printf("race "); }

 #pragma omp task

 { printf("car "); }

 }

 }

 printf(“is fun to watch”);

 printf("\n");

 return(0);

}

OpenMP
Tasks -
Example

You want some code that prints either “A race car is fun to watch” or
“A car race is fun to watch” - how would you do this using OpenMP?
int main()

{

 #pragma omp parallel

 {

 #pragma omp single

 {

 printf("A ");

 #pragma omp task

 { printf("race "); }

 #pragma omp task

 { printf("car "); }

 #pragma omp taskwait

 printf(“is fun to watch”);

 }

 }

 printf("\n");

 return(0);

}

Questions?

Synchronization is very important in executing things in the correct
order

You can insert synchronization everywhere so that things execute in
the correct order

Unfortunately synchronization is extremely expensive (in real
applications with complex tasks and dependencies)

You want to use the minimum number of synchronization that
yields correct execution

OpenMP -
Synchronization

Synchronization is used to impose order constraints and to protect
access to shared data

Critical

Atomic

Barrier

Ordered

Locks

OpenMP -
Synchronization

int sum = 0;
#pragma omp parallel
{
 sum += omp_get_thread_num();
}
printf("sum = %d\n", sum);

What would happen if you ran this with 16 threads?

OpenMP -
Synchronization

Critical section

● Mutual exclusion - only one thread at a time can enter the
critical region

int sum = 0;
#pragma omp parallel
{
 #pragma omp critical
 sum += omp_get_thread_num();
}
printf("sum = %d\n", sum);

OpenMP -
Synchronization

Atomic variables

● Mutual exclusion - but only to the memory location (i.e., sum
in this example).

int sum = 0;
#pragma omp parallel
{
 #pragma omp atomic
 sum += omp_get_thread_num();
}
printf("sum = %d\n", sum);

OpenMP -
Synchronization

Barrier

● Synchronizes all threads in the team - when a barrier directive
is reached a thread will wait until all other threads have
reached the barrier, and the threads will continue executing in
parallel again.

 int n = omp_get_num_threads();
 int x[n];
 for(int i = 0; i < n; i++) {
 x[i] = 0;
 }
 #pragma omp parallel
 {
 int my_tid = omp_get_thread_num();
 for(int i = 0; i < n; i++) {
 x[(i + my_tid) % n] += my_tid;
 }
 }

OpenMP -
Synchronization

Barrier

● Synchronizes all threads in the team - when a barrier directive
is reached a thread will wait until all other threads have
reached the barrier, and the threads will continue executing in
parallel again.

 int n = omp_get_num_threads();
 int x[n];
 for(int i = 0; i < n; i++) {
 x[i] = 0;
 }
 #pragma omp parallel
 {
 int my_tid = omp_get_thread_num();
 for(int i = 0; i < n; i++) {
 // each x[i] gets the sum of all thread IDs.
 x[(i + my_tid) % n] += my_tid;
 }
 }

OpenMP -
Synchronization

Barrier

● Synchronizes all threads in the team - when a barrier directive
is reached a thread will wait until all other threads have
reached the barrier, and the threads will continue executing in
parallel again.

 int n = omp_get_num_threads();
 int x[n];
 for(int i = 0; i < n; i++) {
 x[i] = 0;
 }
 #pragma omp parallel
 {
 int my_tid = omp_get_thread_num();
 for(int i = 0; i < n; i++) {
 x[(i + my_tid) % n] += my_tid;
 #pragma omp barrier
 }
 }

OpenMP -
Synchronization

Assuming n = 16

● How many flops to calculate this function (i.e., each x[i] gets
sum of 0 ~ 15) if only 1 thread was working on it?

OpenMP -
Synchronization

How many flops to calculate this function if only 1 thread was
working on it?

● 16 adds per element of x and 16 elements -> 16 x 16 = 256 flops

How many flops if 16 threads were working on it?

OpenMP -
Synchronization

How many flops to calculate this function if only 1 thread was
working on it?

● 16 adds per element of x and 16 elements -> 16 x 16 = 256 flops

How many flops if 16 threads were working on it?

● Still 256 flops
● It doesn’t matter how many threads are working on it, as long

as the total work done remains the same

OpenMP -
Synchronization

Assuming 1 add requires 1 “epoch” to calculate - how many epochs
for 1 thread?

OpenMP -
Synchronization

Assuming 1 add requires 1 “epoch” to calculate - how many epochs
for 1 thread?

● 256 epochs

Assuming 16 thread, how many epochs?

OpenMP -
Synchronization

Assuming 1 add requires 1 “epoch” to calculate - how many epochos
for 1 thread?

● 256 epochs

Assuming 16 thread, how many epochs?

● 16 epochs? No, it depends.
● If there are at least 16 add units on the processors, 16 epochs

(assuming other conditions are satisfied)
● If there are fewer than 16 add units, more than 16 epochs.

Ordered

● specifies that iterations of the enclosed loop will be executed in the
same order as if they were executed on a serial processor.

 #pragma omp parallel
 {
 #pragma omp for ordered schedule(dynamic)
 for(int i = 0; i < 16; i++) {
 printf("%d\n", i);
 #pragma omp ordered
 printf(">> %d\n", i);
 }
 }

OpenMP -
Synchronization

OpenMP -
Synchronization

Locks

● Similar to a critical section - it guarantees that some
instructions can only be executed by one thread at a time.

● Locks are about data (vs. critical section is about code).

int count[100];
for(int i = 0; i < 100; i++) {
 count[i] = 0;
}

#pragma omp parallel
{
 for(int i = 0; i < 1000; i++) {
 int x = rand() % 100;
 count[x]++;
 }
}
int sum = 0;
for(int i = 0; i < 100; i++) {
 sum += count[i];
}

OpenMP -
Synchronization

Locks

● Similar to a critical section - it guarantees that some
instructions can only be executed by one thread at a time.

● Locks are about data (vs. critical section is about code).

int count[100];
for(int i = 0; i < 100; i++) {
 count[i] = 0;
}

#pragma omp parallel
{
 for(int i = 0; i < 1000; i++) {
 int x = rand() % 100;
 #pragma omp critical
 count[x]++;
 }
}
int sum = 0;
for(int i = 0; i < 100; i++) {
 sum += count[i];
}

OpenMP -
Synchronization

Locks

● Similar to a critical section - it guarantees that some
instructions can only be executed by one thread at a time.

● Locks are about data (vs. critical section is about code).

Using a critical section is unnecessarily restrictive because threads
become serialized at that point
Instead, use locks

OpenMP -
Synchronization

Locks

● Similar to a critical section - it guarantees that some
instructions can only be executed by one thread at a time.

● Locks are about data (vs. critical section is about code).

Create an array of locks - one for each element of count
Create/destroy
void omp_init_lock(omp_lock_t *lock);
void omp_destroy_lock(omp_lock_t *lock);

Set/release
void omp_set_lock(omp_lock_t *lock);
void omp_unset_lock(omp_lock_t *lock);

int omp_test_lock(); - this is useful for checking if a lock has been released and
if not, do some other work

omp_lock_t writelock[100];
for(int i = 0; i < 100; i++) {
 omp_init_lock(&(writelock[i]));
}
#pragma omp parallel
{
 for(int i = 0; i < 1000; i++) {
 int x = rand() % 100;
 omp_set_lock(&(writelock[x]));
 count[x]++;
 omp_unset_lock(&(writelock[x]));
 }
}
for(int i = 0; i < 100; i++) {
 omp_destroy_lock(&(writelock[i]));
}

OpenMP -
Synchronization

Data Scope

Also called “Data Sharing” - since OpenMP is for “shared memory”
systems, most data are shared by default by the threads (except for
loop variables in parallel for constructs).

However, you can explicitly define how variables are scoped, using
the following:

● PRIVATE
● FIRSTPRIVATE
● LASTPRIVATE
● SHARED
● DEFAULT
● REDUCTION
● COPYIN

Data Scope

The PRIVATE clause declares variables in its list to be private to each
thread.

● Creates a local copy of the variable and is uninitialized

The DEFAULT clause allows the user to specify a default scope for all
variables in the lexical extent of any parallel region.

● By default, it is default(shared) - no need to use this.
● Common use case is default(none) - now, you must list

storage attribute for each variable (good programming
practice)

The SHARED clause declares variables in its list to be shared among
all threads in the team.

● Typically used if default(none) is used

Data Scope -
Example

int a = 1;
int b = 2;
int c = 3;

#pragma omp parallel default(none) private(b,c) shared(a)
{
 int tid = omp_get_thread_num();
 b = tid + 1;
 c = tid + 2;
 printf("thread %d -- a is %d\n", tid, a);
 printf("thread %d -- b is %d\n", tid, b);
 printf("thread %d -- c is %d\n", tid, c);
}

Data Scope -
Example

int a = 1;
int b = 2;
int c = 3;

#pragma omp parallel default(none) private(b,c) shared(a)
{
 int tid = omp_get_thread_num();
 b = tid + 1;
 c = tid + 2;
 printf("thread %d -- a is %d\n", tid, a);
 printf("thread %d -- b is %d\n", tid, b);
 printf("thread %d -- c is %d\n", tid, c);
}

main.c:199:5: error: ‘a’ not specified in enclosing ‘parallel’ - compile error

Data Scope

The FIRSTPRIVATE clause combines the behavior of the PRIVATE
clause with automatic initialization of the variables in its list.

The LASTPRIVATE clause combines the behavior of the PRIVATE
clause with a copy from the last loop iteration or section to the
original variable object.

Data Scope -
Example

int a = 1;
int b = 2;
int c = 3;

#pragma omp parallel default(none) firstprivate(b,c)
shared(a)
{
 int tid = omp_get_thread_num();
 printf("thread %d -- a is %d\n", tid, a);
 printf("thread %d -- b is %d\n", tid, b);
 printf("thread %d -- c is %d\n", tid, c);
}

What would happen?

Data Scope -
Example

int a = 1;
int b = 2;
int c = 3;

#pragma omp parallel default(none) firstprivate(b,c)
shared(a)
{
 int tid = omp_get_thread_num();
 printf("thread %d -- a is %d\n", tid, a);
 printf("thread %d -- b is %d\n", tid, b);
 printf("thread %d -- c is %d\n", tid, c);
}

b = 2 and c = 3 initialization for each thread.

Data Scope -
Example

int a = 1;
int b = 2;
int c = 3;

#pragma omp parallel for default(none) firstprivate(b, c)
lastprivate(a)
for(int i = 0; i < 10; i++) {
 int tid = omp_get_thread_num();
 printf("%d %d %d\n", tid, i, b + c);
 a = i;
}
printf("a = %d\n", a);

What happens in the loop?

What is printed at the end?

The LASTPRIVATE clause combines the behavior of the PRIVATE
clause with a copy from the last loop iteration or section to the
original variable object.

The THREADPRIVATE directive specifies that global variables are
replicated, with each thread having its own copy (by default global
variables are shared).

The COPYIN clause provides a means for assigning the same value
to THREADPRIVATE variables for all threads in the team. Copy
source is the master thread.

Data Scope

int b = 2;
int c = 3;
#pragma omp threadprivate(b,c)

void main()
{
 b = 100;
 c = 200;

 int a = 1;
 #pragma omp parallel default(none) shared(a)
copyin(b,c)
 {
 printf("%d %d %d %d\n", omp_get_thread_num(), a,
b, c);
 }
}

Data Scope -
Example

Data Scope -
Example

1 1 100 200
0 1 100 200
2 1 100 200
3 1 100 200

int b = 2;
int c = 3;
#pragma omp threadprivate(b,c)

void main()
{
 b = 100;
 c = 200;

 int a = 1;
 #pragma omp parallel default(none) shared(a)
copyin(b,c)
 {
 printf("%d %d %d %d\n", omp_get_thread_num(), a,
b, c);
 }
}

What would be the values of b and c at the end? (It does compile,
because b and c are global variables)

Data Scope -
Example

Data Scope -
Example

3 1 2 3
2 1 2 3
1 1 2 3
0 1 100 200

Why?

OpenMP
Directives

Parallel region construct

A block of code that will be executed by multiple threads
#pragma omp parallel [clause ...] newline

 if (scalar_expression)

 private (list)

 shared (list)

 default (shared | none)

 firstprivate (list)

 reduction (operator: list)

 copyin (list)

 num_threads (integer-expression)

 structured_block

OpenMP
Directives

if (scalar_expression)

● An integer expression that, if it evaluates to true (nonzero),
causes the code in the parallel region to execute in parallel. If
the expression evaluates to false (zero), the parallel region is
executed in serial (by a single thread).

OpenMP
Directives

num_threads (integer expression)

● Specifies the number of threads that should be used to
execute the code section

● When might you want to use this instead of
OMP_NUM_THREADS?

OpenMP
Directives

reduction (operator:list)

● Performs a reduction operation (using the “operator”) on the
variables that appear in the list

OpenMP
Directives -
Example

 /* Initialization */
 int i;
 const int MAX = 100;
 n = MAX;
 result = 0.0;
 for (i=0; i < n; i++) {
 a[i] = i;
 b[i] = i;
 }

 #pragma omp parallel for private(i) reduction(+:result)
 for (i = 0; i < n; i++) {
 result += (a[i] + b[i]);
 }
 printf("Final result= %f\n",result);

OpenMP
Directives -
Example

 /* Initialization */
 const int MAX = 100;
 n = MAX;
 result = 0.0;
 for (i=0; i < n; i++) {
 a[i] = i + 1;
 b[i] = i + 1;
 }

 #pragma omp parallel for private(i) reduction(*:result)
 for (i = 0; i < n; i++) {
 result *= (a[i] + b[i]);
 }
 printf("Final result= %f\n",result);

Should this work?

OpenMP
Directives -
Example

 /* Initialization */
 const int MAX = 100;
 n = MAX;
 result = 1.0;
 for (i=0; i < n; i++) {
 a[i] = i + 1;
 b[i] = i + 1;
 }

 #pragma omp parallel for private(i) reduction(*:result)
 for (i = 0; i < n; i++) {
 result += (a[i] + b[i]);
 }
 printf("Final result = %f\n",result);

Should this work?
Without changing the code, can you make it print different numbers?

OpenMP
Directives -
Example

 /* Initialization */
 const int MAX = 100;
 n = MAX;
 result = 1.0;
 for (i=0; i < n; i++) {
 a[i] = i + 1;
 b[i] = i + 1;
 }

 #pragma omp parallel for private(i) reduction(*:result)
 for (i = 0; i < n; i++) {
 result += (a[i] + b[i]);
 }
 printf("Final result = %f\n",result);

Should this work?
Without changing the code, can you make it print different numbers?

● Change the number of threads

OpenMP
Directives -
Example

OpenMP
Directives

#pragma omp for [clause ...] newline

 schedule (type [,chunk])

 ordered

 private (list)

 firstprivate (list)

 lastprivate (list)

 shared (list)

 reduction (operator: list)

 collapse (n)

 nowait

 for_loop

OpenMP
Directives

nowait

● No implicit barrier at the end - each thread continues to the
next section without waiting for all the threads working on the
loop to finish

● Typically used when the next section does not rely on the
result computed in the loop (because loops have an implicit
barrier, even if it’s not needed)

OpenMP
Directives

collapse (n)

Specify how many loops (in a nested loop) should be
merged/collapsed into one larger iteration space

for(i = 0; i < X; i++) {
 for(j = 0; j < Y; j++) {
 for(k = 0; k < Z; k++) {
 // do something
 }
 }
}

for(l = 0; l < (X * Y * Z); l++) {
 int i = ?;
 int j = ?;
 int k = ?;
 // do something
}

OpenMP
Directives

collapse (n)

Specify how many loops (in a nested loop) should be
merged/collapsed into one larger iteration space

for(i = 0; i < X; i++) {
 for(j = 0; j < Y; j++) {
 for(k = 0; k < Z; k++) {
 // do something
 }
 }
}

for(l = 0; l < (X * Y * Z); l++) {
 int i = l / (Y * Z);
 int j = (l % (Y * Z)) / Z;
 int k = (l % (Y * Z)) % Z;
 // do something
}

OpenMP
Directives

collapse (n)

● Specify how many loops (in a nested loop) should be
merged/collapsed into one larger iteration space

Why?

● Outer loop iteration is fewer than # of threads -> idle threads
● You can swap the inner and outer loops, but this may not be

correct and/or lead to lower data locality (you are traversing
your data in a different way)

OpenMP
Directives

schedule (type, chunk)

Specify how the threads are assigned to the loop iterations

type

static

dynamic

guided

runtime

auto

OpenMP
Directives

schedule (type, chunk)

static - loop iterations are divided into pieces of size
chunk and statically assigned to threads. If chunk is not specified,
iterations are evenly distributed. Least amount of overhead.

dynamic - loop iterations are divided into pieces of size
chunk and dynamically assigned to threads. When a thread
finishes one chunk, it is assigned another. Default chunk size is 1.

When would this be good to use?

OpenMP
Directives

schedule (type, chunk)

static - loop iterations are divided into pieces of size
chunk and statically assigned to threads. If chunk is not specified,
iterations are evenly distributed. Least amount of overhead.

dynamic - loop iterations are divided into pieces of size
chunk and dynamically assigned to threads. When a thread
finishes one chunk, it is assigned another. Default chunk size is 1.

Good when loop iterations do not all take the same amount of
time (and you do not know exactly by how much ahead of time).

OpenMP
Directives

schedule (type, chunk)

guided

● Iterations are dynamically assigned to threads in blocks as
threads request them until no blocks remain to be assigned.

● The size of the initial block is proportional to:
number_of_iterations / number_of_threads

● Subsequent blocks are proportional to
number_of_iterations_remaining /
number_of_threads

● The chunk parameter defines the minimum block size. The
default chunk size is 1.

● How guided is scheduled depends on the OpenMP
implementation (Guided A and B are from different impl.)

OpenMP
Directives

schedule (type, chunk)

runtime - The scheduling decision is deferred until
runtime by the environment variable OMP_SCHEDULE.

auto - The scheduling decision is delegated to the
compiler and/or the runtime system.

