
Parallel Patterns

CIS 431/531
Intro to Parallel Computing

OpenMP

Simple way of parallelizing code based on the fork-join model

Loops, sections, tasks, etc.

How to map/assign OpenMP threads to threads/cores/sockets

Assignments

● Calculate Pi in parallel (using a circle and Monte Carlo
method)

● Calculate a prefix sum in parallel

Previously...

Today
Dependencies

Loop carried dependency

Parallel patterns

Recurring combination of task distribution and/or data access

Parallel
Models

Sequential Models

● Random Access Machine (RAM) Model
● von Neumann model

Parallel Models

● A parallel computer is simply a collection of processors
interconnected in some manner to coordinate activities and
exchange data

These models are used as a general framework for describing and
analyzing parallel algorithms

● Three common parallel models - directed acyclic graphs,
shared-memory, and network

Directed
Acyclic Graph

Captures data flow parallelism

Nodes represent operations/tasks to be performed

Edges represent dependency or flow of data/results

Nodes without any incoming edges - input

Nodes without any outgoing edges - output

DAG represents the operations involved in the algorithm and
constraints in the order of execution

 for (i=1; i<100; i++)

 a[i] = a[i-1] + 100;

Shared
Memory
Model

Parallel extension to the RAM model (PRAM)

Memory size is infinite, number of processors is unbounded

Processors communicate via the memory

Each processor accesses memory in 1 cycle, and each
instruction completes in 1 cycle

As with the RAM model, it neglects important practical properties
such as memory/instruction latency and synchronization

Network

G = (N, E)

N are the processing nodes

E are bidirectional communication links

Each processor has its own memory

No shared memory (between the nodes)

Network operations may be synchronous or asynchronous and
requires communication primitives

send (X, i)

receive(Y, j)

Captures the message passing model for algorithm design

Parallelism

Formally, the ability to execute different parts of the computation
concurrently on different machines

Parallelism

Reduces running/execution time

Better resource utilization

What is being parallelized?

Tasks - instructions, functions, etc.

Data

Granularity

Coarse-grained and fine-grained

Parallel
Algorithms

“Recipe” for solving a problem on multiple processing elements

Standard steps for creating a parallel algorithm

● Identify work (e.g., instructions, data) that can be performed
concurrently

● Partition the concurrent work on separate processing
elements

● Properly manage input, output, and intermediate data
● Coordinate data accesses to to satisfy dependencies

Which step is the most difficult to handle?

Questions?

Dependency

Code 1

a = 1;

b = 2;

Code 2

a = 1;

b = a + 1;

Code 3

a = 1;

a = 2;

Code 4

a = b + 1;

b = 1;

Independent

Dependent

True dependency (RAW, flow)

Dependent

Output dependency (WAW)

Dependent

Anti-dependency (WAR)

Dependency
Graph

You can use a DAG to visually represent dependency

S1: a=1;

S2: b=a;

S3: a=b+1;

S4: c=a;

Which instructions can execute in parallel?

Dependency
Graph

You can use a DAG to visually represent dependency

S1: a=1;

S2: b=a;

S3: a=b+1;

S4: c=a;

Which instructions can execute in parallel?

Can we determine this in a more systemic manner?

Yes, by comparing IN and OUT sets for each node

● IN - set of all memory locations (variables) that may be used in
node S

● OUT - set of all memory locations (variables) that may be
modified by node S

Assuming that there is a path from S1 to S2, the following shows
how to intersect IN and OUT to determine data dependence

Dependency
Graph

Dependency
Graph

● IN - set of all memory locations (variables) that may be used in
node S

● OUT - set of all memory locations (variables) that may be
modified by node S

S1: a=1;

S2: b=a;

S3: a=b+1;

S4: c=a;

Identifying
Parallelism

Significant amount of parallelism are often found in loops

 for (i=0; i<100; i++)

 S1: a[i] = i;

Dependency?

DOALL loop (foreach loop)

All iterations are independent of each other - all statements
can be executed at the same time

for (i=0; i<100; i++) {

 S1: a[i] = i;

 S2: b[i] = 2*i;

}

Identifying
Parallelism

What about here?

for (i=1; i<100; i++)

 a[i] = a[i-1] + 100;

Are there any dependencies? What kind?

for (i=5; i<100; i++)

 a[i-5] = a[i] + 100;

Identifying
Parallelism

What about here?

for (i=1; i<100; i++)

 a[i] = a[i-1] + 100;

for (i=5; i<100; i++)

 a[i-5] = a[i] + 100;

a[0] = a[5] + 100;
a[5] = a[10] + 100;

Loop-carried
Dependence

A loop-carried dependence occurs when there is a dependence
between statements instances in two different iterations of a loop

Loop carried dependence can prevent loop iterations from
being parallelized using DOALL

Dependence is lexically forward if source comes before the
target, or lexically backward otherwise

Unrolling the loop can help figure this out

Loop-carried
Dependence

for (i=0; i<100; i++)

 a[i+10] = f(a[i]);

Dependency?

Between a[0] and a[10], between a[10] and a[20], etc.

Between a[1] and a[11], between a[11] and a[21], etc.

Is it possible to parallelize this loop? How?

Loop-carried
Dependence

for (i=0; i<100; i++)

 a[i+10] = f(a[i]);

Dependency?

Between a[0] and a[10], between a[10] and a[20], etc.

Between a[1] and a[11], between a[11] and a[21], etc.

Is it possible to parallelize this loop? How?

Similar to:

for (i=5; i<100; i++)

 a[i-5] = a[i] + 100;

Loop-carried
Dependence

for (i=1; i<100; i++)

 S1: a[i] = ...;

 S2: ... = a[i - 1];

Is it possible to parallelize this loop? How?

Loop-carried
Dependence

for (i=1; i<100; i++)

 S1: a[i] = ...;

 S2: ... = a[i - 1];

Is it possible to parallelize this loop? How?

Software pipelining

Loop-carried
Dependence

for (i=1; i<100; i++)

 S1: a[i] = ...;

 S2: ... = a[i - 1];

for (i=1; i<100; i+=4)

 S1: a[1] = ...;

 S2: ... = a[0];

 S1: a[2] = ...;

 S2: ... = a[1];

 S1: a[3] = ...;

 S2: ... = a[2];

 S1: a[4] = ...;

 S2: ... = a[3];

for (i=1; i<100; i+=4)

 S1: a[1] = ...;

 S1: a[2] = ...;

 S1: a[3] = ...;

 S1: a[4] = ...;

 S2: ... = a[0];

 S2: ... = a[1];

 S2: ... = a[2];

 S2: ... = a[3];

Loop-carried
Dependence

for (i=0; i<100; i++)

 for (j=1; j<100; j++)

 a[i][j] = f(a[i][j-1]);

Dependency?

Loop-carried
Dependence

for (i=0; i<100; i++)

 for (j=1; j<100; j++)

 a[i][j] = f(a[i][j-1]);

Dependency?

Loop independence on i

Loop-carried dependency on j -> outer loop can be parallelized

Synchronization

How is parallelism achieved when there are dependencies?

A way to force ordering of tasks (on different processors/cores) is
required

Use synchronization mechanisms

Barriers, locks, semaphores

Questions?

Parallel
Patterns

A recurring combination of task distribution and data access

Nesting patterns

Control patterns

Data management patterns

Others

Some programming models are based on specific parallel patterns

Nesting

Ability to hierarchically compose patterns

Can be both serial and parallel

Any task block on the left can be replaced by another pattern
with the same input/output dependency

Control
Serial

Sequence, selection, iteration, and recursion

Parallel

Fork-join, map, stencil, reduction, scan, recurrence

Sequence

Ordered list of tasks

Selection

Condition c is first evaluated, and either task a or b is executed
depending on c

Iteration

Condition c is evaluated, and if true, a is executed, and then the
process repeats until c is false

Recursion
Dynamic form of nesting, where a function call itself repeatedly

Tail recursion is a special recursion that can be converted into
iteration - easier for the compiler to optimize and/or parallelize

Parallel
Control
Patterns

Parallel control patterns extend serial ones (i.e., each is related to at
least one serial one)

Types

Fork-join, map, stencil, reduction, scan, recurrence

Fork-join

Allows control to “fork” into multiple parallel flows, which later
“joins”

Cilk Plus implements this with spawn and sync

OpenMP uses #pragma parallel to create parallel regions

A “join” is different from a barrier

Join - only one thread continues after synchronizing at the join

Barrier - all threads continue after synchronizing at the barrier

Map

Performs a function/task over every element of a collection

Map replicates a serial iteration pattern, where each iteration is
independent of others

Replicated function is also referred to as an elemental function

Stencil

Elemental function accesses a set of “neighbors”

Generalization of a map

Often combined with iteration

Boundary condition must be handled carefully/differently

Reduction

Combines every element in a collection using an associative
“combiner” function

The associativity allows different ordering of the combination (and
therefore allow parallelization)

Examples are:

Add, multiply, max, min, AND, OR, etc.

Reduction

Scan

Computes partial reduction of a collection

For every output in a collection, a reduction of the input up to that
point is computed

If the function is associative, scan can be parallelized
Example:

Prefix sum

Scan

Recurrence

More complex version of map, where the loop iteration can depend
on one another

Similar to map, but elements can use outputs of adjacent elements
as inputs

Recurrence requires serial ordering of dependent elements

Example:

T1 = 1

Tn = Tn-1 + 1 (for n >= 2)

Recurrences are difficult to parallelize, but not necessarily
impossible

Recurrence

for(i = 0; i < w; i++) {

 for(j = 0; j < h; j++) {

 b[i][j] = f(b[i - 1][j], b[i][j - 1], a[i][j])

 }

}

How would you parallelize this?

Recurrence

Data
Management

Serial

Random read/write, stack, heap, objects

Parallel

Pack, pipeline, geometric decomposition, gather, scatter

Random
read/write

Memory locations are indexed with addresses (i.e., pointers)

Aliasing (uncertainty of two pointer referring to the same object)
can cause problems when parallelizing

Pack

Eliminates unused space between elements in a collection

Unpack does the opposite

Pipeline
Connects data in a producer-consumer manner

Can be linear (basic) or can be in a DAG form

Typically used with other patterns (to increase parallelism)

Geometric
Decomposition

Arranges data into a subcollections

Can be overlapping or non-overlapping

Gather

Gather reads in a collection of data using a given collection of
indices

Scatter

Inverse of gather

Race condition can occur when we have two writes to the same
location

