CIS 431/531
Intro to Parallel Computing

GPUs and CUDA



CPU GPU

e Instruction-level parallelism (ILP) e Data-level parallelism (DLP)
e few “brawny” cores ® many “wimpy” cores
® general-purpose computing e high peak performance
e Reduce latency e Increase throughput
e large, complex memor e large number of
CPU VS. G PU hiegrarchy i ' ha?dware threads
e hardware prefetching ® user-managed

“scratchpad” cache




System

Comparison
(2019)

Sapphire Hopper H100 | Difference
Rapids PCle
Platinum 8490H
# Cores/SM 60 114 1.90x
Clock (max) 3.5 GHz 1.71 GHz 0.49x
SIMD width 512 Bits N/A
CUDA cores N/A 14592
Performance 13.44 TFLOPS* | 51 TFLOPS 3.80x
(single-precision)
Performance 6.72 TFLOPS* | 26 TFLOPS 3.86x
(double-precision)
Bandwidth 307.2 GB/s 2000 GB/s 6.51x
TDP 350 Watts 350 Watts 1.00x

*Difficult to achieve in practice - when using 2 AVX-512, CPU typically runs at a lower frequency due to power limitations




Intel Xeon E5- Difference
2687W

# Cores/SMX 1.75x%
Clock frequency 3.8 GHz 735 MHz 0.20x
(max)
SIMD Width 256-bits
System
. Thread processors 2688 SP + 896 DP
Com parison Performance 8 cores x 3.8 GHz x 2688 x 735 MHz x 8.12x
(single precision) (8 Add + 8 Mul) = 2 (FMA) =
(2013) 486.4 GFLOPS 3.95 TFLOPS
Performance 8 cores x 3.8 GHz x 896 x 735 MHz x 5.42x
(double precision) (4 Add + 4 Mul) = 2 (FMA) =
243.2 GFLOPS 1.32 TFLOPS
Memory bandwidth 51.2 GB/s 250 GB/s 4.88x

TDP 150 W 235 W 1.57x




Typical

Compute
Node

CPU

n-channel PCI Express Streaming
memory bus x16 Multiprocessors
DRAM [@=——==pp| System Agent |dfmmm t 2000 GB/s
307 GB/s NVLink GDDR5 DRAM
Direct Media
Intertace (DMI)
Sound Platform Disk
Controller
Ethernet Hub (PCH) USB




CPU 63 GB/s
n-channel PCI Express Streaming

memory bus x16 Multiprocessors
Ty p ica | DRAM [@=———==pp| System Agent |dmmmly t 2000 GB/s
Compute 450GBys | | CDDRODRAM

Direct Media
N 0 d e Intertace (DMI)
Sound Platform Disk
— Controller EEEEEEEEER

Ethernet Hub (PCH) USB




NVLink 1.0

Memory Memory

720 GB/sI 1720 GB/s
~ 38.4 GB/s

P100 > P100
[ L

38.4 GB/s 38.4 GB/s

76.8 GB/s
Memory
38.4 GB/s
38.4 GB/s
38.4 GB/s '
Memory
76.8 GB/s
38.4 GB/s 38.4 GB/s
P100 < > P100
S 38.4GB/s
720 GB/SI 1720 GB/s

Memory Memory



PCle Gend
CAPI 2.0

DDR4

D eren 1

N V L N k pe :::”3 ':'? NVLink \NVLlnk NVLink / NVLink |
;Y::;:y I 150GB/s 150GB/s 150GB/s 150GB/s |

\

Nvidia V100 Nvidia V100 Nvidia V100 Nvidia V100




Is GPU the

. Given an application, is it a good idea to put it on the GPU?
ng ht PP g P

If so, what is the expected speedup?

Solution?




Maybe. Let's see what Amdahl says:
Consider

e Two systems: Sapphire Rapids and Hopper
e Workload W that uses 12GB of data and takes Ty =2 seconds

Amdahlls Law to run on the CPU

ReVi Sited e 30% of Wis serial and 70% is perfectly parallelizable
e What isT oy?

T o, = (12 GB/ 63 GB/s) + 0.3 x 2 seconds + (0.7 x 2 seconds) / 3.86x
= 0.96 seconds

Speedup = 2.1x




Maybe. Let's see what Amdahl says:
Consider

e Two systems: Sapphire Rapids and Hopper
e Workload W that uses 12GB of data and takes Ty =2 seconds

Amdahl’s Law to run on the CPU
Revi Sited e 30% of Wis serial and 70% is perfectly parallelizable

e WhatisT,,? 7 NvLinkoverhead

T o, = (12 GB/ 63 GB/s) + 0.3 x 2 seconds + (0.7 x 2 seconds) / 3.86x
= 0.96 seconds

Speedup = 2.1x




Maybe. Let's see what Amdahl says:
Consider

e Two systems: Sapphire Rapids and Hopper (with PCle)
e Workload W that uses 12GB of data and takes Ty =2 seconds

Amdahlls Law to run on the CPU

ReVi Sited e 30% of Wis serial and 70% is perfectly parallelizable
e What isT oy?

T o, = (12 GB/ 63GB/s) + 0.3 x 2 seconds + (0.7 x 2 seconds) / 3.86x
=1.15 seconds

Speedup = 1.73x




e Answer: Not always
s GPU the e Computation needs to be sufficiently large to
hide/amortize PCle transfer times

Right
Solution? computation

e Of course, there are many other factors...

e There needs to be sufficient amount of parallelism in the




Programming model for GPUs (i.e., many-core architecture)
Single instruction multiple thread (SIMT)

e Large number of threads that all execute the same sequence
of instructions

e Hardware multithreading allows fast switching between idle
and active threads to hide latency

Designed to scale to different number of GPU cores

e Three key abstractions:
e Thread hierarchy
e Memory hierarchy, and
® Synchronization



Thread

Hierarchy

Grid

__global _ void helloWorid [float® in, float* out)
{
int bid = gridDim.x * blociddey + blockidi x;
int tid = bid * blockDim x + threadide.x;

float tmp = in[tid];

out{tid] = tmp




Example




Naive OpenMP

for(i = 0; 1 < N; i++) #fpragma omp parallel for
{ for(i = 0; i < N; i++) {
Ali] += 2; Ali] += 2;

} }

Example




Naive OpenMP

#pragma omp parallel for

{ for(i = 0; i < N; i++) {
Ali] += 2; Ali] += 2;

} }

Example

CUDA

int threadID = blockIdx.x * blockDim.x + threadIdx.x
A[threadID] += 2;




blockIdx.x

| |
threadidx.x 0 1 2 3 0 1 2 3

Mapping

Threads

A

global 1D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15




Thread Blocks

Given a 3-D grid of thread blocks

e Thereare(gridDim.x*gridDim.y*gridDim. z)thread
blocks in the grid

e Each thread block’s position is identified by blockIdx. x,
blockIdx.y, and blockIdx.z

Similarly for a 3-D thread block

e DblockDim.x, blockDim.y, blockDim.z
¢ threadIdx.x, threadldx.y, threadIdx.z

Thread-to-data mapping depends on how the work is divided
amongst the threads

e You can choose a “natural” mapping (i.e., one thread per data)
or assign multiple data to a single thread (i.e., thread
processes the assigned data serially)



Memory

Hierarchy

thread

thread
block

grid

<“+— variables
<+— |ocal memory

<+— shared memory

+  Shuffle (Kepler architecture+)

<+— global memory
<+—— constant memory (read-only)
<+—— texture memory (read-only)




Within a thread block

e via_ syncthreads();

Global synchronization

Synchronization

e Implicit synchronization between grids
e Only way to synchronize globally is to finish the grid and start
another grid




SMX SMX SMX SMX
RegF RegF RegF RegF
CUDA CUDA CUDA CUDA
Cores Cores Cores “ee Cores
dCache dCache dCache dCache
G P U Sh;lem Shl\{em ShMem Shh;em
Architecture }
L2 Cache

!

GDDR5 SDRAM




Volta
treaming
Multiprocessor

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
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LO Instruction Cache
Warp Scheduler (32 thread/clk)
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L0 Instruction Cache
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Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex



Memory

Hierarchy

On CPUs
e Registers << L1 (2.81MB) << L2 (2120MB) ~= L3 (112.5MB)
On GPUs

e Register file: 256 KB/SM * 114 = 28.5 MB
e Licache: 256 KB/SM * 114 = 28.5 MB
e L2cache:50MB

e Registers == L1 (28.5MB) < L2 (50MB)

CPU has few threads -> use cache to hide latency

GPU has many threads -> use threads to hide latency (but need a lot
of registers to do hardware multithreading)



Scheduling

Each thread blocks get scheduled on a multiprocessor (SM) by the
GigaThread Engine

e Thereis no guarantee in the order in which they get scheduled
e Thread blocks run independently to each other

Multiple thread blocks can reside on a single SM simultaneously
(occupancy)

e The number of thread blocks residing in a SM is determined by the
resource usage and availability (typically shared memory and
registers)

Once scheduled, each thread blocks runs to completion



Execution

Minimum unit of execution: warp

e 32threads
e Many optimizations are based on the behavior at warp level

At any given time, multiple warps will be executing
e Could be from the same or different thread blocks
A warp of threads could be either

e Executing
e Waiting (for data or their turn)

When a warp gets stalled, they could be switched out
“instantaneously” so that another warp can start executing

e Hardware multithreading (thus SIMT)



Performance

Notes

On a branch, threads in a warp can diverge

e Execution is serialized — threads taking one branch executes while
others idle (those cores are not working).

Avoid divergence!!!

e Use bitwise operation when possible
e Diverge at granularity of warps (no penalty)

**0n Volta (new with Volta)

e Eachthread getsits own PC and call stack
e Threads can now diverge and converge at sub-warp granularity
e Idle threads can yield cores to other threads (cores are working)

Nevertheless, try to keep divergence to a minimum - there are other
hardware bottlenecks that can reduce performance



Occupancy = # resident warps / max # warps

e # resident warps is determined by per-thread register and
per-block shared memory usage

Pe I’fO Fnmance e Max # warps is specific to the hardware generation
Notes More warps means more threads with which to hide latency

e Increases the chance of keeping the GPU busy at all times
e Does not necessarily mean better performance




Reading from the DRAM occurs at the granularity of 128 Byte
transactions

Requests are further decomposed to aligned cache lines
L1 constant: 64 Bytes (Volta)

L1 data: 32 Bytes (Volta)

L2 cache: 64 Bytes (Volta)

Performance

Notes

Minimize loading redundant cache lines to maximize bandwidth
utilization

e Aligned access to memory
e Sequential access pattern




Little’s Law

o L=AW
e L =average number of customersin a store
e A=arrivalrate

Pe I’fO rmance e W =average time spent

Notes Memory Bandwidth

tens of thousands of in-flight
/ requests!!!

Bandwidth (A) 2000 GB/s

YVYVYVY
YVYVYVYY
YVVVYY

Latency (‘N) ~100S ns



In summary...

e Use as many “cheap” threads as possible
e Maximizes occupancy
® Increasesthe number of memory requests (to maximize
bandwidth utilization)
Notes e Avoid thread divergence
e Ifunavoidable, diverge at the warp level
e Use aligned and sequential data access pattern
® Minimize redundant data loads

Performance




Questions?




Estimate Pi using an integral of (sqrt(2-x*2)) from -1to 1 = pi/2

Exercise - Pi




Estimate Pi using an integral of (sqrt(2-x"2)) from -1 to 1 = pi/2

Estimate as sum of rectangular areas - more rectangles -> more
accurate

Exercise - Pi




Exercise - Pi

long num steps = 100000;
if (argc > 1) {
num_steps = atoi(argv[l]);

double step;
double x;

double y;

double pi;

double sum = 0.0;

step = 1.0/ (double) num steps;

for (int i = 0; 1 < num steps; i++)
x = 1 * step;
y = sqrt(l - x * x);
sum = sum + y * step;

}

pi = 4 * sum;

printf ("Pi is %$1.10g\n", pi);

{



Exercise - Pi

long num steps = 100000;
if(argc > 1) {
num_steps = atoi(argv[l]);

double step;
double x;

double y;

double pi;

double sum = 0.0;

step = 1.0/ (double) num steps;
#fpragma omp parallel for private(x,y)

for (int i = 0; 1 < num steps; i++) |
x = 1 * step;
y = sqrt(l - x * x);

sum = sum + y * step;

}

pi = 4 * sum;

printf ("Pi is %1.10g\n", pi);



Exercise - Pi

long num steps = 100000;
if(argc > 1) {
num_steps = atoi(argv[l]);

double step;
double x;

double y;

double pi;

double sum = 0.0;

step = 1.0/ (double) num steps;
#pragma omp parallel for private(x,y)

for (int i = 0; 1 < num steps; i++) |
x = 1 * step;
y = sqrt(l - x * x);

sum = sum + y * step;

}

pi = 4 * sum;

printf ("Pi is %1.10g\n", pi);

reduction (+:sum)



Time to calculate Pi with 1.000000e+06 steps is: 0.0172998
Pi is 3.141594652
Time to calculate Pi with 1.000000e+06 steps is: 0.0871445

ExerC|Se = P| Pi is 3.141594652

Why?




Using 56 thread and OMP PROC BIND=true

Time to calculate Pi with 1.000000e+06 steps is: 0.0172998
Pi is 3.141594652
Time to calculate Pi with 1.000000e+06 steps is: 0.0871445
Pi is 3.141594652

Time to calculate Pi with 1.000000e+07 steps is: 0.173032
Pi is 3.141592854
Time to calculate Pi with 1.000000e+07 steps is: 0.78545
Pi is 3.141592854

ExerCISe = PI Time to calculate Pi with 1.000000e+08 steps is: 1.73137

Pi is 3.141592674
Time to calculate Pi with 1.000000e+08 steps is: 8.03387
Pi is 3.141592674

Why?
e Dynamic scheduling with chunk size 1 - each thread only does
1 iteration before being assigned another.
e Same issue as Fibonacci - more overhead than benefit




long num steps = 100000;
if(argc > 1) {
num steps = atoi(argv[l]);

double step;
double x;

double y;

double pi;

double sum = 0.0;

ExerCISe = PI step = 1.0/ (double) num steps;

#pragma omp parallel for private(x,y) reduction (+:sum)
schedule (static)

for (int 1 = 0; 1 < num steps; i++) {
x = 1 * step;
y = sqrt(l - x * x);

sum = sum + y * step;
}

pi = 4 * sum;

printf ("Pi is %$1.10g\n", pi);




Exercise - Pi

Using 56 thread and OMP PROC BIND=true

Time to
Pi is 3.
Time to
Pi is 3.

Time to
Pi is 3.
Time to
Pi is 3.

Time to
Pi is 3.
Time to
Pi is 3.

Time to
Pi is 3.
Time to
Pi is 3.

Time to
Pi is 3.
Time to
Pi is 3.

calculate Pi with 1.000000e+06

141594652
calculate
141594652

calculate
141592854
calculate
141592854

calculate
141592674
calculate
141592674

calculate
141592656
calculate
141592656

calculate
141592655
calculate
141592655

Pi

Pi

Pi

Pi

Pi

Pi

Pi

Pi

Pi

with

with

with

with

with

with

with

with

with

.000000e+06

.000000e+07

.000000e+07

.000000e+08

.000000e+08

.000000e+09

.000000e+09

.410065e+09

.410065e+09

steps

steps

steps

steps

steps

steps

steps

steps

steps

steps

is:

is:

is:

is:

is:

is:

is:

is:

is:

is:

0.0174838

0.0151599(1.15x)

0.175225

0.0201986(8.68x)

1.67194

0.0622832(26.84x)

16.8294

0.429524(39.18x)

23.7939

0.595115(39.98x%)



Exercise - Pi

long num steps = 100000;
if(argc > 1) {
num_steps = atoi(argv[l]);

double step;
double x;

double y;

double pi;

double sum = 0.0;

step = 1.0/ (double) num steps;

#pragma omp parallel for private (x,y)recuetionr{tisum)
schedule (static)
for (int 1 = 0; 1 < num steps; i++) {
x = 1 * step;
y = sqrt(l - x * x);
sum = sum + y * step;
}

pi = 4 * sum;

printf ("Pi is %1.10g\n", pi);

How would you implement this without reduction?



Exercise - Pi

int nThreads = omp get max threads();

double* sum t = (double*) malloc(sizeof (double) * nThreads);
for(int 1 = 0; 1 < nThreads; i++) {
sum t[i] = 0.0;

} /* in main function */

double step; .
double x Would this be faster, slower, or the same as

double y; Implementation using reduction, and why?
double pi;
double sum = 0.0;

step = 1.0/ (double) num steps;
#pragma omp parallel for private(x,y) schedule(static)
for (int i = 0; 1 < num steps; i++) {

int tid = omp get thread num();

x = 1 * step;
y = sqrt(l - x * x);
sum_t[tid] = sum t[tid] + y * step;
}
for(int i = 0; i < omp get max threads(); i++) {

sum += sum_t[i];
}

pi = 4 * sum;

return pi;



Exercise - Pi

step = 1.0/ (double) num steps;
#pragma omp parallel private (x,y,sum)
{
sum = 0.0;
#pragma omp for schedule (static)
for (int i = 0; 1 < num steps; i++) {
int tid = omp get thread num();
x = 1 * step;
y = sqrt(l - x * x);
sum = sum + y * step;
}
#pragma omp atomic
total sum += sum;

pi = 4 * total sum;



