
CIS 431/531
Intro to Parallel Computing
GPUs and CUDA



CPU vs. GPU

CPU

● Instruction-level parallelism (ILP)
● few “brawny” cores
● general-purpose computing

● Reduce latency
● large, complex memory 

hierarchy
● hardware prefetching

GPU

● Data-level parallelism (DLP)
● many “wimpy” cores
● high peak performance

● Increase throughput
● large number of 

hardware threads
● user-managed 

“scratchpad” cache



System 
Comparison
(2019)

Sapphire 
Rapids 
Platinum 8490H

Hopper H100 
PCIe

Difference

# Cores/SM 60 114 1.90x

Clock (max) 3.5 GHz 1.71 GHz 0.49x

SIMD width 512 Bits N/A

CUDA cores N/A 14592

Performance 
(single-precision)

13.44 TFLOPS* 51 TFLOPS 3.80x

Performance 
(double-precision)

6.72 TFLOPS* 26 TFLOPS 3.86x

Bandwidth 307.2 GB/s 2000 GB/s 6.51x

TDP 350 Watts 350 Watts 1.00x

*Difficult to achieve in practice - when using 2 AVX-512, CPU typically runs at a lower frequency due to power limitations



System 
Comparison
(2013)



Typical 
Compute 
Node

NVLink307 GB/s

2000 GB/s



Typical 
Compute 
Node

NVLink307 GB/s

2000 GB/s

450 GB/s

63 GB/s



NVLink 1.0



NVLink 2.0



Is GPU the 
Right 
Solution?

Given an application, is it a good idea to put it on the GPU?

If so, what is the expected speedup?



Amdahl’s Law 
Revisited

Maybe. Let’s see what Amdahl says:

Consider

● Two systems: Sapphire Rapids and Hopper
● Workload W that uses 12GB of data and takes TCPU = 2 seconds 

to run on the CPU
● 30% of W is serial and 70% is perfectly parallelizable
● What is TGPU?

TGPU = (12 GB/ 63 GB/s) + 0.3 × 2 seconds + (0.7 × 2 seconds) / 3.86x

    = 0.96 seconds

Speedup = 2.1x
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Maybe. Let’s see what Amdahl says:

Consider

● Two systems: Sapphire Rapids and Hopper
● Workload W that uses 12GB of data and takes TCPU = 2 seconds 

to run on the CPU
● 30% of W is serial and 70% is perfectly parallelizable
● What is TGPU?

TGPU = (12 GB/ 63 GB/s) + 0.3 × 2 seconds + (0.7 × 2 seconds) / 3.86x

    = 0.96 seconds

Speedup = 2.1x

NVLink overhead



Amdahl’s Law 
Revisited

Maybe. Let’s see what Amdahl says:

Consider

● Two systems: Sapphire Rapids and Hopper (with PCIe)
● Workload W that uses 12GB of data and takes TCPU = 2 seconds 

to run on the CPU
● 30% of W is serial and 70% is perfectly parallelizable
● What is TGPU?

TGPU = (12 GB/ 63GB/s) + 0.3 × 2 seconds + (0.7 × 2 seconds) / 3.86x

    = 1.15 seconds

Speedup = 1.73x



● Answer: Not always
● Computation needs to be sufficiently large to 

hide/amortize PCIe transfer times
● There needs to be sufficient amount of parallelism in the 

computation
● Of course, there are many other factors…

Is GPU the 
Right 
Solution?



CUDA

Programming model for GPUs (i.e., many-core architecture)

Single instruction multiple thread (SIMT)

● Large number of threads that all execute the same sequence 
of instructions

● Hardware multithreading allows fast switching between idle 
and active threads to hide latency

Designed to scale to different number of GPU cores

● Three key abstractions:
● Thread hierarchy
● Memory hierarchy, and 
● Synchronization



Thread 
Hierarchy



Example

Naïve
for(i = 0; i < N; i++) 
{
    A[i] += 2;
}



Example

Naïve
for(i = 0; i < N; i++) 
{
    A[i] += 2;
}

OpenMP
#pragma omp parallel for
for(i = 0; i < N; i++) {
    A[i] += 2;
}



Example

OpenMP
#pragma omp parallel for
for(i = 0; i < N; i++) {
    A[i] += 2;
}

CUDA
int threadID = blockIdx.x * blockDim.x + threadIdx.x
A[threadID] += 2;

Naïve
for(i = 0; i < N; i++) 
{
    A[i] += 2;
}



Mapping 
Threads



Thread Blocks

Given a 3-D grid of thread blocks

● There are (gridDim.x*gridDim.y*gridDim.z) thread 
blocks in the grid

● Each thread block’s position is identified by blockIdx.x, 
blockIdx.y, and blockIdx.z

Similarly for a 3-D thread block

● blockDim.x, blockDim.y, blockDim.z
● threadIdx.x, threadIdx.y, threadIdx.z

Thread-to-data mapping depends on how the work is divided 
amongst the threads

● You can choose a “natural” mapping (i.e., one thread per data) 
or assign multiple data to a single thread (i.e., thread 
processes the assigned data serially)



Memory 
Hierarchy

+ Shuffle (Kepler architecture+)



Synchronization

Within a thread block

● via __syncthreads();

Global synchronization

● Implicit synchronization between grids
● Only way to synchronize globally is to finish the grid and start 

another grid



GPU 
Architecture



Volta 
Streaming 
Multiprocessor



Memory 
Hierarchy

On CPUs

● Registers << L1 (2.81MB) << L2 (120MB) ~= L3 (112.5MB)

On GPUs

● Register file: 256 KB/SM * 114 =  28.5 MB
● L1 cache: 256 KB/SM * 114 =  28.5 MB
● L2 cache: 50 MB
● Registers == L1 (28.5MB) < L2 (50MB)

 

CPU has few threads -> use cache to hide latency

GPU has many threads -> use threads to hide latency (but need a lot 
of registers to do hardware multithreading)



Scheduling

Each thread blocks get scheduled on a multiprocessor (SM) by the 
GigaThread Engine

● There is no guarantee in the order in which they get scheduled
● Thread blocks run independently to each other

Multiple thread blocks can reside on a single SM simultaneously 
(occupancy)

● The number of thread blocks residing in a SM is determined by the 
resource usage and availability (typically shared memory and 
registers)

Once scheduled, each thread blocks runs to completion



Execution

Minimum unit of execution: warp

● 32 threads
● Many optimizations are based on the behavior at warp level

At any given time, multiple warps will be executing

● Could be from the same or different thread blocks

A warp of threads could be either

● Executing
● Waiting (for data or their turn)

When a warp gets stalled, they could be switched out 
“instantaneously” so that another warp can start executing

● Hardware multithreading (thus SIMT)



Performance 
Notes

On a branch, threads in a warp can diverge

● Execution is serialized – threads taking one branch executes while 
others idle (those cores are not working).

Avoid divergence!!!

● Use bitwise operation when possible
● Diverge at granularity of warps (no penalty)

**On Volta (new with Volta)

● Each thread gets its own PC and call stack
● Threads can now diverge and converge at sub-warp granularity
● Idle threads can yield cores to other threads (cores are working)

Nevertheless, try to keep divergence to a minimum - there are other 
hardware bottlenecks that can reduce performance



Performance 
Notes

Occupancy = # resident warps / max # warps 

● # resident warps is determined by per-thread register and 
per-block shared memory usage

● Max # warps is specific to the hardware generation

More warps means more threads with which to hide latency

● Increases the chance of keeping the GPU busy at all times
● Does not necessarily mean better performance



Performance 
Notes

Reading from the DRAM occurs at the granularity of 128 Byte 
transactions

● Requests are further decomposed to aligned cache lines
● L1 constant: 64 Bytes (Volta)
● L1 data: 32 Bytes (Volta)
● L2 cache: 64 Bytes (Volta)

Minimize loading redundant cache lines to maximize bandwidth 
utilization

● Aligned access to memory
● Sequential access pattern



Performance 
Notes

Little’s Law

● L = λW
● L = average number of customers in a store
● λ = arrival rate
● W = average time spent

Memory Bandwidth

2000 GB/s

~100s ns



Performance 
Notes

In summary… 

● Use as many “cheap” threads as possible
● Maximizes occupancy
● Increases the number of memory requests (to maximize 

bandwidth utilization)
● Avoid thread divergence

● If unavoidable, diverge at the warp level
● Use aligned and sequential data access pattern

● Minimize redundant data loads



Questions?



Exercise - Pi

Estimate Pi using an integral of (sqrt(1-x^2)) from -1 to 1 = pi/2

y = √(1 - x2)



Exercise - Pi

Estimate Pi using an integral of (sqrt(1-x^2)) from -1 to 1 = pi/2

Estimate as sum of rectangular areas - more rectangles -> more 
accurate

y = √(1 - x2)



    long num_steps = 100000;
    if(argc > 1) {
        num_steps = atoi(argv[1]);
    }

    double step;
    double x;
    double y;
    double pi;
    double sum = 0.0;

    step = 1.0/(double) num_steps;
    for (int i = 0; i < num_steps; i++) {
        x = i * step;
        y = sqrt(1 - x * x);
        sum = sum + y * step;
    }
    pi = 4 * sum;

    printf("Pi is %1.10g\n", pi);

Exercise - Pi



    long num_steps = 100000;
    if(argc > 1) {
        num_steps = atoi(argv[1]);
    }

    double step;
    double x;
    double y;
    double pi;
    double sum = 0.0;

    step = 1.0/(double) num_steps;
    #pragma omp parallel for private(x,y)
    for (int i = 0; i < num_steps; i++) {
        x = i * step;
        y = sqrt(1 - x * x);
        sum = sum + y * step;
    }
    pi = 4 * sum;

    printf("Pi is %1.10g\n", pi);

Exercise - Pi



    long num_steps = 100000;
    if(argc > 1) {
        num_steps = atoi(argv[1]);
    }

    double step;
    double x;
    double y;
    double pi;
    double sum = 0.0;

    step = 1.0/(double) num_steps;
    #pragma omp parallel for private(x,y) reduction(+:sum)
    for (int i = 0; i < num_steps; i++) {
        x = i * step;
        y = sqrt(1 - x * x);
        sum = sum + y * step;
    }
    pi = 4 * sum;

    printf("Pi is %1.10g\n", pi);

Exercise - Pi



Time to calculate Pi with 1.000000e+06 steps is: 0.0172998
Pi is 3.141594652
Time to calculate Pi with 1.000000e+06 steps is: 0.0871445
Pi is 3.141594652

Why?

Exercise - Pi



Using 56 thread and OMP_PROC_BIND=true

Time to calculate Pi with 1.000000e+06 steps is: 0.0172998
Pi is 3.141594652
Time to calculate Pi with 1.000000e+06 steps is: 0.0871445
Pi is 3.141594652

Time to calculate Pi with 1.000000e+07 steps is: 0.173032
Pi is 3.141592854
Time to calculate Pi with 1.000000e+07 steps is: 0.78545
Pi is 3.141592854

Time to calculate Pi with 1.000000e+08 steps is: 1.73137
Pi is 3.141592674
Time to calculate Pi with 1.000000e+08 steps is: 8.03387
Pi is 3.141592674

Why?
● Dynamic scheduling with chunk size 1 - each thread only does 

1 iteration before being assigned another.
● Same issue as Fibonacci - more overhead than benefit

Exercise - Pi



    long num_steps = 100000;
    if(argc > 1) {
        num_steps = atoi(argv[1]);
    }

    double step;
    double x;
    double y;
    double pi;
    double sum = 0.0;

    step = 1.0/(double) num_steps;
    #pragma omp parallel for private(x,y) reduction(+:sum) 
schedule(static)
    for (int i = 0; i < num_steps; i++) {
        x = i * step;
        y = sqrt(1 - x * x);
        sum = sum + y * step;
    }
    pi = 4 * sum;

    printf("Pi is %1.10g\n", pi);

Exercise - Pi



Using 56 thread and OMP_PROC_BIND=true

Time to calculate Pi with 1.000000e+06 steps is: 0.0174838
Pi is 3.141594652
Time to calculate Pi with 1.000000e+06 steps is: 0.0151599 (1.15x)
Pi is 3.141594652

Time to calculate Pi with 1.000000e+07 steps is: 0.175225
Pi is 3.141592854
Time to calculate Pi with 1.000000e+07 steps is: 0.0201986 (8.68x)
Pi is 3.141592854

Time to calculate Pi with 1.000000e+08 steps is: 1.67194
Pi is 3.141592674
Time to calculate Pi with 1.000000e+08 steps is: 0.0622832 (26.84x)
Pi is 3.141592674

Time to calculate Pi with 1.000000e+09 steps is: 16.8294
Pi is 3.141592656
Time to calculate Pi with 1.000000e+09 steps is: 0.429524 (39.18x)
Pi is 3.141592656

Time to calculate Pi with 1.410065e+09 steps is: 23.7939
Pi is 3.141592655
Time to calculate Pi with 1.410065e+09 steps is: 0.595115 (39.98x)
Pi is 3.141592655

Exercise - Pi



    long num_steps = 100000;
    if(argc > 1) {
        num_steps = atoi(argv[1]);
    }

    double step;
    double x;
    double y;
    double pi;
    double sum = 0.0;

    step = 1.0/(double) num_steps;
    #pragma omp parallel for private(x,y) reduction(+:sum) 
schedule(static)
    for (int i = 0; i < num_steps; i++) {
        x = i * step;
        y = sqrt(1 - x * x);
        sum = sum + y * step;
    }
    pi = 4 * sum;

    printf("Pi is %1.10g\n", pi);

How would you implement this without reduction?

Exercise - Pi



Exercise - Pi

    int nThreads = omp_get_max_threads();
    double* sum_t = (double*) malloc(sizeof(double) * nThreads);
    for(int i = 0; i < nThreads; i++) {
        sum_t[i] = 0.0;
    } /* in main function */

    double step;
    double x;
    double y;
    double pi;
    double sum = 0.0;

    step = 1.0/(double) num_steps;
    #pragma omp parallel for private(x,y) schedule(static)
    for (int i = 0; i < num_steps; i++) {
        int tid = omp_get_thread_num();
        x = i * step;
        y = sqrt(1 - x * x);
        sum_t[tid] = sum_t[tid] + y * step;
    }

    for(int i = 0; i < omp_get_max_threads(); i++) {
        sum += sum_t[i];
    }
    pi = 4 * sum;

    return pi;

Would this be faster, slower, or the same as
Implementation using reduction, and why?



Exercise - Pi

    step = 1.0/(double) num_steps;
    #pragma omp parallel private(x,y,sum) 
    {
    sum = 0.0;
    #pragma omp for schedule(static)
    for (int i = 0; i < num_steps; i++) {
        int tid = omp_get_thread_num();
        x = i * step;
        y = sqrt(1 - x * x);
        sum = sum + y * step;
    }
    #pragma omp atomic
        total_sum += sum;
    }

    pi = 4 * total_sum;


