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CPU vs. GPU

CPU

● Instruction-level parallelism (ILP)
● few “brawny” cores
● general-purpose computing

● Reduce latency
● large, complex memory 

hierarchy
● hardware prefetching

GPU

● Data-level parallelism (DLP)
● many “wimpy” cores
● high peak performance

● Increase throughput
● large number of 

hardware threads
● user-managed 

“scratchpad” cache



Example

OpenMP
#pragma omp parallel for
for(i = 0; i < N; i++) {
    A[i] += 2;
}

CUDA
int threadID = blockIdx.x * blockDim.x + threadIdx.x
A[threadID] += 2;

Naïve
for(i = 0; i < N; i++) 
{
    A[i] += 2;
}



Mapping 
Threads



Thread 
Hierarchy



Memory 
Hierarchy

+ Shuffle (Kepler architecture +)



Performance 
Notes

Reading from the DRAM occurs at the granularity of 128 Byte 
transactions

● Requests are further decomposed to aligned cache lines
● L1 constant: 64 Bytes (Volta)
● L1 data: 32 Bytes (Volta)
● L2 cache: 64 Bytes (Volta)

Minimize loading redundant cache lines to maximize bandwidth 
utilization

● Aligned access to memory
● Sequential access pattern



Performance 
Notes

Little’s Law

● L = λW
● L = average number of customers in a store
● λ = arrival rate
● W = average time spent

Memory Bandwidth



Questions?



nvcc

nvcc is a CUDA-C compiler that splits your code into

● Host code - forwarded to gcc/g++
● Device code - forwarded to Nvidia device compiler (nvcc)

nvcc links together the host code and device code into one 
executable

Convention - CUDA code usually has the .cu extension



nvcc



nvcc

PTX (CUDA IR)

● Some instructions are only supported on specific architectures 
(e.g., shuffle)

● Can be compiled to binary for a newer devices

CUBIN (CUDA Binary)

● ELF formatted binary file
● Typically Embedded into host code by nvcc
● Can also be generated by using the -cubin option
● Binary code is specific to a particular architecture

Just-in-time (JIT) compilation

● Any PTX code loaded by an application at runtime is compiled 
further to binary by the device driver

● Increases application load time
● Allows application to benefit from new compiler 

improvements specific to new device driver
● Only way to compile code for a device that does not exist at 

the time of writing the code



Tools

cuobjdump

● Extracts information from CUDA binary files (both standalone 
and those embedded in host binaries) and presents them in 
human readable format. 

● Includes CUDA assembly code for each kernel, CUDA ELF 
section headers, string tables, relocators and other CUDA 
specific sections. It also extracts embedded ptx text from host 
binaries.

nvidisasm

● Extracts information from standalone cubin files and presents 
them in human readable format. 

● The output includes CUDA assembly code for each kernel, 
listing of ELF data sections and other CUDA specific sections.

● Also does control flow analysis to annotate jump/branch 
targets and makes the output easier to read.



CUDA 
Runtime

CUDA is composed of two APIs

● Runtime API
● Driver API

Runtime API is implemented on top 
of the Driver API and eases device 
code management.

They are mutually exclusive - you 
can use one or the other, but must 
use one of them

You will most likely use the 
Runtime to program CUDA (for 
n0w)



Compute 
Capabilities

General specification and features of a device depends on its 
compute capability

When compiling code, you must get the compute capability correct 
for both CUBIN and PTX, otherwise, it may not run (correctly).

Currently up to 9.0



CUDA by 
Example

/usr/local/cuda/bin/nvcc -c bandwidthTest.cu 
 -o bandwidthTest.o  -gencode arch=compute_70,code=sm_70 
--default-stream per-thread -I/usr/local/cuda/include 
-I/usr/local/cuda/samples/common/inc

/usr/bin/g++ -Wall -g  -O3 -fopenmp bandwidthTest.o -o 
btest  -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas 
-lcurand -lcusolver



    // Array on the host system
    unsigned char* host_array = (unsigned char*) malloc(sizeof(char) * n);
    assert(host_array);
    memset(host_array, 0xff, n);

    // Array on the GPU
    unsigned char* device_array;
    if(cudaMalloc(&device_array, n) != cudaSuccess) {
        fprintf(stderr, "Error: cudaMalloc at line %d in function %s\n",
                (__LINE__), (__func__));
    }

    cudaMemcpy(device_array, host_array, n, cudaMemcpyHostToDevice);

CUDA by 
Example - 
Data Transfer



CUDA by 
Example - 
Data Transfer

    // Timers
    cudaEvent_t start, stop;
    float tt;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);

    cudaEventRecord(start, 0);
    cudaMemcpy(device_array, host_array, n, cudaMemcpyHostToDevice);
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&tt, start, stop);
    fprintf(stdout, "Time for H->D transfer: %g (ms)\n", tt);
    fprintf(stdout, "Bandwidth performance: %g\n", (n / tt)/1e6);



CUDA by 
Example - 
Data Transfer

PCIe/NVLink Test
Time for H->D transfer: 73.4372 (ms)
Bandwidth performance: 13.6171



This is on a NVLink 2.0 system - up to 75 GB for host to device

Why?

CUDA by 
Example - 
Data Transfer



This is on a NVLink 2.0 system - up to 75 GB for host to device

Why?

● Pinned memory
● With malloc() GPU is given a virtual memory - for each word of 

data, CPU has to look up physical address and then copy - 
slow

● Tell the OS to keep a memory at fixed location (i.e., pin). GPU 
can now directly access the host memory.

● Pinned memory limits OS ability to move data around (i.e., 
manage the memory) - you will run out of memory much 
faster (if you’re using too much).

CUDA by 
Example - 
Data Transfer



CUDA by 
Example - 
Data Transfer

    unsigned char* host_array1;
    if(cudaHostAlloc(&host_array1, n, cudaHostAllocPortable)) {
        fprintf(stderr, "Error: cudaHostAlloc at line %d in function %s\n",
                (__LINE__), (__func__));
    }



CUDA by 
Example - 
Data Transfer

PCIe/NVLink Test (Pinned)
Time for H->D transfer (Pinned): 15.0076 (ms)
Bandwidth performance (Pinned): 66.6331



CUDA by 
Example - 
Data Transfer

cudaMemcpy(device_array1, device_array, n, cudaMemcpyDeviceToDevice);

Time for D->D transfer: 2.59722 (ms)
Bandwidth performance: 770.055

~86% of peak memory bandwidth



CUDA by 
Example - 
Data Transfer

__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if(tid < n) {
        dst[tid] = src[tid];
    }
}

unsigned int tbSize = 256;
unsigned int nTb = (n + tbSize - 1) / tbSize;
myMemcpy<<<nTb, tbSize>>>(device_array1, device_array, n);



CUDA by 
Example - 
Data Transfer

__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if(tid < n) {
        dst[tid] = src[tid];
    }
}

unsigned int tbSize = 256;
unsigned int nTb = (n + tbSize - 1) / tbSize;
dim3 dimBlock(tbSize, 1, 1);
dim3 dimGrid(nTb, 1, 1);
myMemcpy<<<dimGrid, dimBlock>>>(device_array1, device_array, n);



CUDA by 
Example - 
Data Transfer

__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if(tid < n) {
        dst[tid] = src[tid];
    }
}

Time for D->D transfer (manual): 11.5446 (ms)
Bandwidth performance (manual): 346.483 (GB/s) 

Less than ½ of what we were getting with
cudaMemcpy



__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if(tid < n) {
        dst[tid] = src[tid];
    }
}

Time for D->D transfer (manual): 11.5446 (ms)
Bandwidth performance (manual): 346.483 (GB/s) 

fprintf(stdout, "Bandwidth performance: %g\n", (n / tt)/1e6);
→ it should be 2 * n 
  You are reading n bytes, and then writing n bytes.

CUDA by 
Example - 
Data Transfer



Free Memory

    free(host_array); // free for malloc
    cudaFreeHost(host_array1); // free for cudaHostAlloc
    cudaFree(device_array); // free for cudaMalloc
    cudaFree(device_array1);
    cudaEventDestroy(start);
    cudaEventDestroy(stop);



CUDA 
Program 
Structure

1) Declare memory on GPU to store the data to process
2) Copy data from host to device
3) Call the kernel(s) to process the data
4) Copy result back from device to host
5) Free memory



CUDA by 
Example - 
Quick Sort

Let’s now consider quicksort on a GPU



Quicksort

7 8 5 2 1 9 53 4

2 8 5 7 1 9 53 4

2 1 5 7 8 9 53 4

2 1 4 7 8 9 53 5

algorithm quicksort(A, lo, hi) is

    if lo < hi then

        p := partition(A, lo, hi)

        quicksort(A, lo, p - 1)

        quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is

    pivot := A[hi]

    i := lo

    for j := lo to hi do

        if A[j] < pivot then

            swap A[i] with A[j]

            i := i + 1

    swap A[i] with A[hi]
    return i

lo hi



CUDA by 
Example - 
Quick Sort

Let’s now consider quicksort on a GPU

Step 1 Partition the initial list

● How do we partition the list amongst thread blocks?
● Recall that thread blocks CANNOT co-operate and thread 

blocks can go in ANY order
● However, we need to have MANY threads and thread blocks in 

order to see good performance



CUDA by 
Example - 
Quick Sort



CUDA by 
Example - 
Quick Sort

● First each thread block is assigned a chunk of the array, and 
then the chunk is divided among the threads.

● It would be good to assign consecutive data to consecutive 
threads - why?



CUDA by 
Example - 
Quick Sort

● Each thread counts the number of elements that are below 
and above the pivot



CUDA by 
Example - 
Quick Sort



CUDA by 
Example - 
Quick Sort



CUDA by 
Example - 
Quick Sort



CUDA by 
Example - 
Quick Sort

● Without an atomic instruction, different threads might write to 
the same point



CUDA by 
Example - 
Quick Sort

● Now it can safely start writing to the “allocated” space



CUDA by 
Example - 
Quick Sort



CUDA by 
Example - 
Quick Sort

That was the first part.

● A kernel will be called each for lower and upper half and 
repeated

This is done until there are enough independent partitions (lower 
and upper halves) that can be assigned to thread blocks

● Then each thread block will do the same, minus the FAA
● FAA is not needed since each thread block number 

needs to be sorted within the partition

When sequences become small enough, you can sort it using an 
alternative sorting algorithm (e.g., bitonic sort), or send it to the 
CPU to finish off



CUDA Toolkit Documentation (CUDA 101)
http://www.cse.chalmers.se/~tsigas/papers/GPU-Quicksort-jea.pdf

Nvidia Tesla V100 GPU Architecture (Whitepaper)

Dissecting the Volta GPU Architecture via Microbenchmarking 
(Research paper)

Various Nvidia Tutorials (there are many of them)

Reading 
Recommendations

http://www.cse.chalmers.se/~tsigas/papers/GPU-Quicksort-jea.pdf

