
CIS 431/531
Intro to Parallel Computing
CUDA

CPU vs. GPU

CPU

● Instruction-level parallelism (ILP)
● few “brawny” cores
● general-purpose computing

● Reduce latency
● large, complex memory

hierarchy
● hardware prefetching

GPU

● Data-level parallelism (DLP)
● many “wimpy” cores
● high peak performance

● Increase throughput
● large number of

hardware threads
● user-managed

“scratchpad” cache

Example

OpenMP
#pragma omp parallel for
for(i = 0; i < N; i++) {
 A[i] += 2;
}

CUDA
int threadID = blockIdx.x * blockDim.x + threadIdx.x
A[threadID] += 2;

Naïve
for(i = 0; i < N; i++)
{
 A[i] += 2;
}

Mapping
Threads

Thread
Hierarchy

Memory
Hierarchy

+ Shuffle (Kepler architecture +)

Performance
Notes

Reading from the DRAM occurs at the granularity of 128 Byte
transactions

● Requests are further decomposed to aligned cache lines
● L1 constant: 64 Bytes (Volta)
● L1 data: 32 Bytes (Volta)
● L2 cache: 64 Bytes (Volta)

Minimize loading redundant cache lines to maximize bandwidth
utilization

● Aligned access to memory
● Sequential access pattern

Performance
Notes

Little’s Law

● L = λW
● L = average number of customers in a store
● λ = arrival rate
● W = average time spent

Memory Bandwidth

Questions?

nvcc

nvcc is a CUDA-C compiler that splits your code into

● Host code - forwarded to gcc/g++
● Device code - forwarded to Nvidia device compiler (nvcc)

nvcc links together the host code and device code into one
executable

Convention - CUDA code usually has the .cu extension

nvcc

nvcc

PTX (CUDA IR)

● Some instructions are only supported on specific architectures
(e.g., shuffle)

● Can be compiled to binary for a newer devices

CUBIN (CUDA Binary)

● ELF formatted binary file
● Typically Embedded into host code by nvcc
● Can also be generated by using the -cubin option
● Binary code is specific to a particular architecture

Just-in-time (JIT) compilation

● Any PTX code loaded by an application at runtime is compiled
further to binary by the device driver

● Increases application load time
● Allows application to benefit from new compiler

improvements specific to new device driver
● Only way to compile code for a device that does not exist at

the time of writing the code

Tools

cuobjdump

● Extracts information from CUDA binary files (both standalone
and those embedded in host binaries) and presents them in
human readable format.

● Includes CUDA assembly code for each kernel, CUDA ELF
section headers, string tables, relocators and other CUDA
specific sections. It also extracts embedded ptx text from host
binaries.

nvidisasm

● Extracts information from standalone cubin files and presents
them in human readable format.

● The output includes CUDA assembly code for each kernel,
listing of ELF data sections and other CUDA specific sections.

● Also does control flow analysis to annotate jump/branch
targets and makes the output easier to read.

CUDA
Runtime

CUDA is composed of two APIs

● Runtime API
● Driver API

Runtime API is implemented on top
of the Driver API and eases device
code management.

They are mutually exclusive - you
can use one or the other, but must
use one of them

You will most likely use the
Runtime to program CUDA (for
n0w)

Compute
Capabilities

General specification and features of a device depends on its
compute capability

When compiling code, you must get the compute capability correct
for both CUBIN and PTX, otherwise, it may not run (correctly).

Currently up to 9.0

CUDA by
Example

/usr/local/cuda/bin/nvcc -c bandwidthTest.cu
 -o bandwidthTest.o -gencode arch=compute_70,code=sm_70
--default-stream per-thread -I/usr/local/cuda/include
-I/usr/local/cuda/samples/common/inc

/usr/bin/g++ -Wall -g -O3 -fopenmp bandwidthTest.o -o
btest -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas
-lcurand -lcusolver

 // Array on the host system
 unsigned char* host_array = (unsigned char*) malloc(sizeof(char) * n);
 assert(host_array);
 memset(host_array, 0xff, n);

 // Array on the GPU
 unsigned char* device_array;
 if(cudaMalloc(&device_array, n) != cudaSuccess) {
 fprintf(stderr, "Error: cudaMalloc at line %d in function %s\n",
 (__LINE__), (__func__));
 }

 cudaMemcpy(device_array, host_array, n, cudaMemcpyHostToDevice);

CUDA by
Example -
Data Transfer

CUDA by
Example -
Data Transfer

 // Timers
 cudaEvent_t start, stop;
 float tt;
 cudaEventCreate(&start);
 cudaEventCreate(&stop);

 cudaEventRecord(start, 0);
 cudaMemcpy(device_array, host_array, n, cudaMemcpyHostToDevice);
 cudaEventRecord(stop, 0);
 cudaEventSynchronize(stop);
 cudaEventElapsedTime(&tt, start, stop);
 fprintf(stdout, "Time for H->D transfer: %g (ms)\n", tt);
 fprintf(stdout, "Bandwidth performance: %g\n", (n / tt)/1e6);

CUDA by
Example -
Data Transfer

PCIe/NVLink Test
Time for H->D transfer: 73.4372 (ms)
Bandwidth performance: 13.6171

This is on a NVLink 2.0 system - up to 75 GB for host to device

Why?

CUDA by
Example -
Data Transfer

This is on a NVLink 2.0 system - up to 75 GB for host to device

Why?

● Pinned memory
● With malloc() GPU is given a virtual memory - for each word of

data, CPU has to look up physical address and then copy -
slow

● Tell the OS to keep a memory at fixed location (i.e., pin). GPU
can now directly access the host memory.

● Pinned memory limits OS ability to move data around (i.e.,
manage the memory) - you will run out of memory much
faster (if you’re using too much).

CUDA by
Example -
Data Transfer

CUDA by
Example -
Data Transfer

 unsigned char* host_array1;
 if(cudaHostAlloc(&host_array1, n, cudaHostAllocPortable)) {
 fprintf(stderr, "Error: cudaHostAlloc at line %d in function %s\n",
 (__LINE__), (__func__));
 }

CUDA by
Example -
Data Transfer

PCIe/NVLink Test (Pinned)
Time for H->D transfer (Pinned): 15.0076 (ms)
Bandwidth performance (Pinned): 66.6331

CUDA by
Example -
Data Transfer

cudaMemcpy(device_array1, device_array, n, cudaMemcpyDeviceToDevice);

Time for D->D transfer: 2.59722 (ms)
Bandwidth performance: 770.055

~86% of peak memory bandwidth

CUDA by
Example -
Data Transfer

__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 if(tid < n) {
 dst[tid] = src[tid];
 }
}

unsigned int tbSize = 256;
unsigned int nTb = (n + tbSize - 1) / tbSize;
myMemcpy<<<nTb, tbSize>>>(device_array1, device_array, n);

CUDA by
Example -
Data Transfer

__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 if(tid < n) {
 dst[tid] = src[tid];
 }
}

unsigned int tbSize = 256;
unsigned int nTb = (n + tbSize - 1) / tbSize;
dim3 dimBlock(tbSize, 1, 1);
dim3 dimGrid(nTb, 1, 1);
myMemcpy<<<dimGrid, dimBlock>>>(device_array1, device_array, n);

CUDA by
Example -
Data Transfer

__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 if(tid < n) {
 dst[tid] = src[tid];
 }
}

Time for D->D transfer (manual): 11.5446 (ms)
Bandwidth performance (manual): 346.483 (GB/s)

Less than ½ of what we were getting with
cudaMemcpy

__global__ void myMemcpy(unsigned char* dst, unsigned char* src, int n)
{
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 if(tid < n) {
 dst[tid] = src[tid];
 }
}

Time for D->D transfer (manual): 11.5446 (ms)
Bandwidth performance (manual): 346.483 (GB/s)

fprintf(stdout, "Bandwidth performance: %g\n", (n / tt)/1e6);
→ it should be 2 * n
 You are reading n bytes, and then writing n bytes.

CUDA by
Example -
Data Transfer

Free Memory

 free(host_array); // free for malloc
 cudaFreeHost(host_array1); // free for cudaHostAlloc
 cudaFree(device_array); // free for cudaMalloc
 cudaFree(device_array1);
 cudaEventDestroy(start);
 cudaEventDestroy(stop);

CUDA
Program
Structure

1) Declare memory on GPU to store the data to process
2) Copy data from host to device
3) Call the kernel(s) to process the data
4) Copy result back from device to host
5) Free memory

CUDA by
Example -
Quick Sort

Let’s now consider quicksort on a GPU

Quicksort

7 8 5 2 1 9 53 4

2 8 5 7 1 9 53 4

2 1 5 7 8 9 53 4

2 1 4 7 8 9 53 5

algorithm quicksort(A, lo, hi) is

 if lo < hi then

 p := partition(A, lo, hi)

 quicksort(A, lo, p - 1)

 quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is

 pivot := A[hi]

 i := lo

 for j := lo to hi do

 if A[j] < pivot then

 swap A[i] with A[j]

 i := i + 1

 swap A[i] with A[hi]
 return i

lo hi

CUDA by
Example -
Quick Sort

Let’s now consider quicksort on a GPU

Step 1 Partition the initial list

● How do we partition the list amongst thread blocks?
● Recall that thread blocks CANNOT co-operate and thread

blocks can go in ANY order
● However, we need to have MANY threads and thread blocks in

order to see good performance

CUDA by
Example -
Quick Sort

CUDA by
Example -
Quick Sort

● First each thread block is assigned a chunk of the array, and
then the chunk is divided among the threads.

● It would be good to assign consecutive data to consecutive
threads - why?

CUDA by
Example -
Quick Sort

● Each thread counts the number of elements that are below
and above the pivot

CUDA by
Example -
Quick Sort

CUDA by
Example -
Quick Sort

CUDA by
Example -
Quick Sort

CUDA by
Example -
Quick Sort

● Without an atomic instruction, different threads might write to
the same point

CUDA by
Example -
Quick Sort

● Now it can safely start writing to the “allocated” space

CUDA by
Example -
Quick Sort

CUDA by
Example -
Quick Sort

That was the first part.

● A kernel will be called each for lower and upper half and
repeated

This is done until there are enough independent partitions (lower
and upper halves) that can be assigned to thread blocks

● Then each thread block will do the same, minus the FAA
● FAA is not needed since each thread block number

needs to be sorted within the partition

When sequences become small enough, you can sort it using an
alternative sorting algorithm (e.g., bitonic sort), or send it to the
CPU to finish off

CUDA Toolkit Documentation (CUDA 101)
http://www.cse.chalmers.se/~tsigas/papers/GPU-Quicksort-jea.pdf

Nvidia Tesla V100 GPU Architecture (Whitepaper)

Dissecting the Volta GPU Architecture via Microbenchmarking
(Research paper)

Various Nvidia Tutorials (there are many of them)

Reading
Recommendations

http://www.cse.chalmers.se/~tsigas/papers/GPU-Quicksort-jea.pdf

