
CIS 431/531
Intro to Parallel Computing
CUDA

CUDA
Program
Structure

1) Declare memory on GPU to store the data to process
2) Copy data from host to device
3) Call the kernel(s) to process the data
4) Copy result back from device to host
5) Free memory

Example

OpenMP
#pragma omp parallel for
for(i = 0; i < N; i++) {
 A[i] += 2;
}

CUDA
int threadID = blockIdx.x * blockDim.x + threadIdx.x
A[threadID] += 2;

Naïve
for(i = 0; i < N; i++)
{
 A[i] += 2;
}

Mapping
Threads

Thread
Hierarchy

Memory
Hierarchy

+ Shuffle (Kepler architecture +)

Performance
Notes

Reading from the DRAM occurs at the granularity of 128 Byte
transactions

● Requests are further decomposed to aligned cache lines
● L1 constant: 64 Bytes (Volta)
● L1 data: 32 Bytes (Volta)
● L2 cache: 64 Bytes (Volta)

Minimize loading redundant cache lines to maximize bandwidth
utilization

● Aligned access to memory
● Sequential access pattern

Synchronization

Within a thread block

● via __syncthreads();

Global synchronization

● Implicit synchronization between kernels
● Only way to synchronize globally is to finish the grid and start

another grid

Questions?

Shared
Memory

Shared Memory

● Basically the same hardware as L1 cache
● Managed cache
● Can be configured as needed between L1 and shared memory

(128 KB total)

Shared
Memory

Let’s use shared memory to do a matrix transpose

Matrix transpose

Shared
Memory

Let’s use shared memory to do a matrix transpose

Matrix transpose

● Element in position (I, J) is moved to position (J, I)
● Alternatively, column I becomes row I

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

...

32 threads

32 threads

One element to one thread mapping

...

Questions?

So far, we discussed having one thread handle one data element

This is not required - it’s often used because it’s simpler to
have one thread handle one data element

However, it’s often better to give each thread more work to
do, as creating threads and thread blocks does have an overhead
cost (as long as you have enough thread to keep the GPU busy)

Shared
Memory

Let’s start with a naive code - what is the effective bandwidth of a simple
memory to memory copy using threads?

Assume the matrix size is (nx x ny)

const int TILE_SIZE = 32; // we have to create smaller (thread) blocks to do the work
const int BLOCK_SIZE_X = TILE_SIZE;
const int BLOCK_SIZE_Y = 8; // each thread block is 32x8 (256) 2-D grid of threads

dim3 dimGrid(nx / TILE_SIZE, ny / TILE_SIZE, 1); // We are subdividing the matrix
into 32x32 blocks - how many elements in the matrix is each thread responsible for?

dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y, 1);

copy<<<dimGrid, dimBlock>>>(d_cdata, d_idata);

Shared
Memory

Let’s start with a naive code - what is the effective bandwidth of a
simple memory to memory copy using threads?

Assume the matrix size is (nx x ny)
const int TILE_SIZE = 32;
const int BLOCK_SIZE_X = TILE_SIZE;
const int BLOCK_SIZE_Y = 8;
dim3 dimGrid(nx / TILE_SIZE, ny / TILE_SIZE, 1);
dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y, 1);
copy<<<dimGrid, dimBlock>>>(d_cdata, d_idata);

If the matrix 1024 x 1024 -> Grid size = 1024/32 x 1024/32 = 32 x 32
(2-D grid of thread blocks)

Thread block size is 32 x 8 -> each thread is responsible for (32 x 32) /
(32 x 8) = 4 matrix elements

NOT a one (matrix element) to one (thread) mapping

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

...

32 threads

32 threads

One element to one thread mapping

...

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

...

...

32 threads

8 threads

Many elements to one thread mapping

Each thread has to
operate over 4
elements

Mapping

Each thread block is responsible for 32x32 elements within the
matrix

● The total number of thread blocks created is determined by
what the thread blocks are responsible for

The thread blocks are made up of 32x8=256 threads

● The number of threads in the thread block DOES NOT have to
be the total number of elements - we can have one thread be
responsible for multiple elements

Let’s start with a naive code - what is the effective bandwidth of a
simple memory to memory copy using threads?

Assume the matrix size is (ny x nx)

const int TILE_SIZE = 32;
const int BLOCK_SIZE_X = TILE_SIZE;
const int BLOCK_SIZE_Y = 8;
dim3 dimGrid(nx / TILE_SIZE, ny / TILE_SIZE, 1);
dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y, 1);
copy<<<dimGrid, dimBlock>>>(d_cdata, d_idata);

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

Shared
Memory

BLOCK_SIZE_Y

Determine which
element (i,j) in the
matrix each thread is
responsible for (in
the first iteration)

32

32

Let’s start with a naive code - what is the effective bandwidth of a
simple memory to memory copy using threads?

Assume the matrix size is (ny x nx)

const int TILE_SIZE = 32;
const int BLOCK_SIZE_X = TILE_SIZE;
const int BLOCK_SIZE_Y = 8;
dim3 dimGrid(nx / TILE_SIZE, ny / TILE_SIZE, 1);
dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y, 1);
copy<<<dimGrid, dimBlock>>>(d_cdata, d_idata);

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

Shared
Memory

BLOCK_SIZE_Y

Iterate over all the
elements in the
32x32 tile in the
matrix (4x in this
example)

32

32

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

1024

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

blockIdx.x = 31
blockIdx.y = 0

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

threadIdx.x = 0
threadIdx.y = 0

threadIdx.x = 31
threadIdx.y = 7

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

threadIdx.x = 0
threadIdx.y = 0

threadIdx.x = 31
threadIdx.y = 7

 x = 992
 y = 0

x = 1023
y = 7

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

BLOCK_SIZE_Y

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

BLOCK_SIZE_Y

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

__global__ void copy(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = idata[(y + j) * width + x];
 }
}

BLOCK_SIZE_Y

Note that we are NOT
doing a transpose (yet).
We are doing a simple
copy to see how long it
takes (lower-bound on
transpose time)

Shared
Memory

Version Bandwidth (GB/s)

copy 152.34

You can get about 170 GB/s on a simple memcpy.

Shared
Memory

What happens if we use shared memory to do the same copy?

● Remember, we want to use shared memory to do the transpose

__global__ void copySharedMem(float *odata, const float *idata)
{
 __shared__ float tile[TILE_SIZE * TILE_SIZE];

 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x] =
 idata[(y + j) * width + x];
 }
 __syncthreads();

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] =
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x];
 }
}

Declare shared memory
space

Shared
Memory

What happens if we use shared memory to do the same copy?

● Remember, we want to use shared memory to do the transpose

__global__ void copySharedMem(float *odata, const float *idata)
{
 __shared__ float tile[TILE_SIZE * TILE_SIZE];

 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x] =
 idata[(y + j) * width + x];
 }
 __syncthreads();

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] =
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x];
 }
}

Each thread copies 4
elements to the shared
memory

Shared
Memory

What happens if we use shared memory to do the same copy?

● Remember, we want to use shared memory to do the transpose

__global__ void copySharedMem(float *odata, const float *idata)
{
 __shared__ float tile[TILE_SIZE * TILE_SIZE];

 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x] =
 idata[(y + j) * width + x];
 }
 __syncthreads();

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] =
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x];
 }
}

Each thread copies 4
elements from shared
memory to odata[]

Shared
Memory

What happens if we use shared memory to do the same copy?

__global__ void copySharedMem(float *odata, const float *idata)
{
 __shared__ float tile[TILE_SIZE * TILE_SIZE];

 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x] =
 idata[(y + j) * width + x];
 }
 __syncthreads();

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] =
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x];
 }
}

Is __syncthreads() necessary?

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x] =
 idata[(y + j) * width + x];
 }
 __syncthreads();

shared memory

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] =
 tile[(threadIdx.y + j) * TILE_SIZE + threadIdx.x];
 }

shared memory

Shared
Memory

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

shared memory

__syncthreads() is necessary in this case

Shared
Memory

Version Bandwidth (GB/s)

copy 152.34

shared memory copy 147.97

Questions? So far, nothing out of the ordinary

Shred
Memory

Let’s do a real transpose.
What if we simply read and write naively from the global memory?

__global__ void transposeNaive(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[x * width + (y + j)] = idata[(y + j) * width + x];
 }
}

Is the read/write coalesced (i.e., are the thread reading/writing
consecutive piece of data from memory)?

Read from (i,j)Write to (j,i)

Shred
Memory

What if we simply read and write naively?

__global__ void transposeNaive(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[x * width + (y + j)] = idata[(y + j) * width + x];
 }
}

Read is coalesced - good

● Each warp is made up of threads consecutive in threadIdx.x
(i.e., threadIdx.x = 0 ~ threadIdx.x = 31 belong to the same
warp).

● Therefore, threads in each warp request 32 data elements
consecutive in memory (i.e., coalesced).

Shred
Memory

What if we simply read and write naively?

__global__ void transposeNaive(float *odata, const float *idata)
{
 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[x * width + (y + j)] = idata[(y + j) * width + x];
 }
}

Write is NOT coalesced - bad

Each threads consecutive in threadIdx.x write in a
column-wise manner to the memory (i.e., each write is apart by
width elements apart).

Shred
Memory

 for (int j = 0; j < TILE_SIZE; j+= BLOCK_SIZE_Y) {
 odata[x * width + (y + j)] = idata[(y + j) * width + x];
 }

Each warp reads in a coalesced manner (consecutive data in
memory).

Each warp writes to location 1024 * 4 bytes apart (scatter).

read write

Shared
Memory

Version Bandwidth (GB/s)

copy 152.34

shared memory copy 147.97

naive (in-memory) transpose 43.59

Because of the non-coalesced write, the performance suffers

Shared
Memory

How do we make both read and write coalesced?

● Use shared memory to “rearrange” the data
● While reading from the shared memory in a non-coalesced

manner is also bad, because shared memory is extremely fast,
the penalty is much smaller

Shared
Memory

__global__ void transposeCoalesced(float *odata, const float *idata)
{
 __shared__ float tile[TILE_SIZE][TILE_SIZE]; // tile[rows][columns]

 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[threadIdx.y + j][threadIdx.x] = idata[(y + j) * width + x];
 }
 __syncthreads();

 x = blockIdx.y * TILE_SIZE + threadIdx.x; // transpose block offset
 y = blockIdx.x * TILE_SIZE + threadIdx.y;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = tile[threadIdx.x][threadIdx.y + j];
 }
}

Shared
Memory

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[threadIdx.y + j][threadIdx.x] = idata[(y + j) * width + x];
 }
 __syncthreads();

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

shared memory

Shared
Memory

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[threadIdx.y + j][threadIdx.x] = idata[(y + j) * width + x];
 }
 __syncthreads();

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 0
y = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

shared memory

Shared
Memory

__global__ void transposeCoalesced(float *odata, const float *idata)
{
 __shared__ float tile[TILE_SIZE][TILE_SIZE];

 int x = blockIdx.x * TILE_SIZE + threadIdx.x;
 int y = blockIdx.y * TILE_SIZE + threadIdx.y;
 int width = gridDim.x * TILE_SIZE;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 tile[threadIdx.y + j][threadIdx.x] = idata[(y + j) * width + x];
 }
 __syncthreads();

 x = blockIdx.y * TILE_SIZE + threadIdx.x; // transpose block offset
 y = blockIdx.x * TILE_SIZE + threadIdx.y;

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = tile[threadIdx.x][threadIdx.y + j];
 }
}

Recalculate index for write

Shared
Memory

 x = blockIdx.y * TILE_SIZE + threadIdx.x; // transpose block offset
 y = blockIdx.x * TILE_SIZE + threadIdx.y;

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x’ = 0
y’ = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

1024

1024

Shared
Memory

 x = blockIdx.y * TILE_SIZE + threadIdx.x; // transpose block offset
 y = blockIdx.x * TILE_SIZE + threadIdx.y;

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x’ = 0
y’ = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

threadIdx.x = 0
threadIdx.y = 0

threadIdx.x = 31
threadIdx.y = 7

 x = 0
y = 992

x = 31
y = 999

Shared
Memory

 for (int j = 0; j < TILE_SIZE; j += BLOCK_SIZE_Y) {
 odata[(y + j) * width + x] = tile[threadIdx.x][threadIdx.y + j];
 }

x = 0
y = 0

x = 0
y = 1

x = 1
y = 0

x = 31
y = 0

x’ = 0
y’ = 31

x = 1
y = 1

x = 31
y = 31

...

...

...

32

32

shared memory

Each thread reads from a column
in the shared memory, then write
the data in a row-wise manner

Shared
Memory

Version Bandwidth (GB/s)

copy 152.34

shared memory copy 147.97

naive (in-memory) transpose 43.59

coalesced transpose 101.76

Shared
Memory

We are getting 101.76 GB/s (out of 152.34 possible)?

Shared memory has 32 banks

● Banks are basically like doors where data can come out of -
more ports mean higher bandwidth

● Access that are 32 elements apart are read from the same
bank

● Reading from shared memory column-wise reads from the
same bank - reads are serialized

This column of data are accessed from
the same bank

shared memory banks

...

Shared
Memory

This column of data are accessed from
the same bank

shared memory banks

...

Shared
Memory

This column of data are accessed from
the same bank

shared memory banks

...

By inserting a “padding” element, each
elements are shifted by one, and
columns are no longer read from the
same bank

__shared__ float tile[TILE_SIZE][TILE_SIZE + 1];

Padding element

Shared
Memory

Version Bandwidth (GB/s)

copy 152.34

shared memory copy 147.97

naive (in-memory) transpose 43.59

coalesced transpose 101.76

 (bank) conflict-free transpose 134.70

Shared
Memory

Version Bandwidth (GB/s)

copy 766.59

shared memory copy 782.32

naive (in-memory) transpose 208.81

coalesced transpose 648.26

 (bank) conflict-free transpose 717.38

Volta V100 GPU, 900 GB/s peak memory bandwidth

Questions?

Typically, shared memory acts as cache - keeping the data and
reusing the data reduces data access latency (from DRAM) and
improves performance

However, that is not the only way of using shared memory - by using
the (extremely fast) shared memory as an intermediate
buffer/cache, we can minimize the penalty of non-coalesced access

● Note that with the transpose example, data was NOT reused
at all

