
CIS 431/531
Intro to Parallel Computing
CUDA



1. Write a CUDA kernel to calculate Pi using the area of a circle 
method. The following OpenMP code is provided as a reference. (10 
minutes).

You may also need to use double atomicAdd(double* address, double val);

    double step, x, y, pi;
    double sum = 0.0;
    step = 1.0/(double) num_steps;
    for (int i = 0; i < num_steps; i++) {
        x = i * step;
        y = sqrt(1 - x * x);
        sum = sum + y * step;
    }
    pi = 4 * sum;
    return pi;

Quiz



2. If the memory bandwidth of a GPU is 100 GB/s (100 * 10^9 
bytes/second) and the time it takes to move data from the DRAM 
to the core is 200 ns (200 * 10^-9 seconds), how many in-flight 
memory requests of 4 bytes are needed to saturate the bandwidth? 
(5 minutes).

Quiz



Previously

CUDA programming

● Thread hierarchy
● Memory hierarchy
● Synchronization

Performance tips

● Many threads should be created to increase latency hiding 
(both for instructions and data)

● Data should be accessed in a coalesced manner
● Shared memory should be used for

● storing data that is reused frequently
● accessing data in a non-coalesced manner in the 

shared memory so that access to DRAM can be done 
in a coalesced manner (e.g., matrix transpose)

Example

● In the matrix transpose example, using the shared memory 
properly can lead to > 3x speedup in performance



Reduction
Commonly used algorithm in many applications

How do we parallelize it?



Reduction

Commonly used algorithm in many applications

How do we parallelize it?

● Tree-based approach
● Each thread reduces a portion
● Global synchronization is required to communicate partial 

results between thread blocks



Reduction

Thread block 0 Thread block 1 Thread block 2 Thread block 3



Reduction

Performance Target?

Arithmetic Intensity = 1 flop / 4 bytes = 0.25

Memory bandwidth-bound

Performance on Talaps?

~170 GB/s



Reduction

Version 1 - Interleaved addressing

This is for a single thread block - each thread block generates a single reduced value
Many thread blocks are doing the same thing over their sequence of elements



Reduction

__global__ void reduce (const int* In, int* Out)
{
  int tid = threadIdx.x; // Local thread ID
  int i = blockIdx.x*blockDim.x + tid; // Global index

  extern __shared__ int Local[];
  Local[tid] = In[i];  // Load into shared mem
  __syncthreads ();

  // Reduce data in shared memory within a thread block
  for (int s = 1; s < blockDim.x; s*=2) { 
    if (tid % (2*s) == 0) //  Is multiple of s (2, 4, 8, …)
      Local[tid] += Local[tid + s];
    __syncthreads ();
  }

  if (tid == 0) Out[blockIdx.x] = Local[0]; // Each thread 
block generates a single value
}



Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 16M 8.69 1.0



Reduction



Reduction

Version 2 - Non-divergent branching 



Reduction

__global__ void reduce (const int* In, int* Out)
{
  int tid = threadIdx.x; //  Local thread ID
  int i = blockIdx.x*blockDim.x + tid; //  Global index

  extern __shared__ int Local[];
  Local[tid] = In[i];  //  Load into shared mem
  __syncthreads ();

for (int s = 1; s < blockDim.x; s*=2) { //  Element stride
    int index = 2*s*tid; //  Thread ID stride
    if (index < blockDim.x) {
      Local[tid] += Local[tid + s];
    }
    __syncthreads ();
}

  if (tid == 0) Out[blockIdx.x] = Local[0];
}

Simply remapping 
threads to work 



Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 
(divergent branching)

16M 8.69 1.0

Non-divergent branching 16M 12.29 1.4



Reduction



Reduction

Version 3 - Sequential addressing



Reduction

__global__ void reduce (const int* In, int* Out)
{
  int tid = threadIdx.x; //  Local thread ID
  int i = blockIdx.x*blockDim.x + tid; //  Global index

  extern __shared__ int Local[];
  Local[tid] = In[i];  //  Load into shared mem
  __syncthreads ();

  for (int s = blockDim.x / 2; s > 0; s>>=1) { 
    if (tid < s) {
      Local[tid] += Local[tid + s];
    }
    __syncthreads ();
  }

  if (tid == 0) Out[blockIdx.x] = Local[0];
}

Simply change 
which elements are 
being added 



Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing 16M 16.81 1.9



Reduction

Only half the threads are “working”



Reduction

First add during load

● While loading the data, add the numbers
● Reduces the number of threads by half
● Double the number of memory requests

● Fewer threads are “wasted.”

 



Reduction

__global__ void reduce (const int* In, int* Out)
{
  int tid = threadIdx.x; //  Local thread ID
  int i = blockIdx.x*blockDim.x + tid; //  Global index

  extern __shared__ int Local[];
  Local[tid] = In[i] + In[i + blockDim.x];  
  __syncthreads ();

  for (int s=blockDim.x/2; s>0; s>>=1) { 
    if (tid < s) {
      Local[tid] += Local[tid + s];
    }
    __syncthreads ();
  }

  if (tid == 0) Out[blockIdx.x] = Local[0];
}



Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6



Questions?

So far, we have

● Reduce branching
● Bank conflicts
● Reduce # of non-working threads

What else can we do?



Reduction

With each iteration, the number of working threads (t) halves

When t < 32, only 1 warp is left

● We do not need __syncthreads()
● Granularity of execution is a warp - threads in a warp 

are executing in a lock-step manner (i.e., already 
synchronized)

● We do not need conditionals

Unroll the loop when t <= 32



for (unsigned int s=blockDim.x / 2; s > 32; s>>=1) { 
if (tid < s) {

sdata[tid] += sdata[tid + s]; 
}
__syncthreads(); 

} 
if (tid < 32) {

sdata[tid] += sdata[tid + 32]; 
sdata[tid] += sdata[tid + 16]; 
sdata[tid] += sdata[tid + 8]; 
sdata[tid] += sdata[tid + 4]; 
sdata[tid] += sdata[tid + 2]; 
sdata[tid] += sdata[tid + 1]; 

} 

Reduction



Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6

Unroll the last loop 16M 50.65 5.8



Reduction

If we know the # of iterations at compile time, we could try unrolling 
the loop completely

● Block sizes are typically power of 2
● Limit your block size to 512 (it used to be max, but now it’s 

1024)
● Use C++ templates



Reduction

template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata) 

if (blockSize >= 512) { 
if (tid < 256) { sdata[tid] += sdata[tid + 256]; } 

__syncthreads(); 
} 
if (blockSize >= 256) { 

if (tid < 128) { sdata[tid] += sdata[tid + 128]; } 
__syncthreads(); 
} 
if (blockSize >= 128) { 

if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); 
} 
if (tid < 32) {

if (blockSize >= 64) sdata[tid] += sdata[tid + 32]; 
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8]; 
if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; 
if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; 
if (blockSize >= sdata[tid] += sdata[tid + 1]; 

} 



Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6

Unroll the last loop 16M 50.65 5.8

Complete unroll 16M 53.7 6.2



Reduction
Increase the number of adds per thread (we’ve seen this with 
transpose, where each thread was responsible for 4 elements)

● Reduces thread block scheduling overhead
● Increases the number of memory requests



Reduction

__global__ void reduce (const int* In, int* Out)
{
  int tid = threadIdx.x; //  Local thread ID
  int i = blockIdx.x*blockDim.x + tid; //  Global index
  Int gridSize = gridDim.x * blockDim.x; // total number of threads

  extern __shared__ int Local[];
  Local[tid] = 0;
  while (i < n) {
    Local[tid] += In[i] + In[i+blockSize];
    i += gridSize;
  }
  __syncthreads();

  for (int s=blockDim.x/2; s>0; s>>=1) { 
    if (tid < s) {
      Local[tid] += Local[tid + s];
    }
    __syncthreads ();
  }

  if (tid == 0) Out[blockIdx.x] = Local[0];
}



Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6

Unroll the last loop 16M 50.65 5.8

Complete unroll 16M 53.7 6.2

More work per thread 16M 102.74 11.9

It is difficult to get the full bandwidth since you are writing & reading from 
intermediate arrays multiple times



Questions?



Stencil

Found in many scientific applications

● PDE, systems of linear equations (e.g., Jacobi, Gauss-Siedel), 
convolution filter, etc.

7-point (3-D) stencil

● For each point (i, j, k) in a NxNxN grid



Stencil



Stencil

Performance

● Naively, each point requires
● 7 reads and 1 write
● 8 flops
● I = 8 / (8 * 4) = 0.25
● Memory bandwidth-bound

Optimally

● Load data only once per point (and reuse it as many times as 
needed)

● 1 read and 1 write (vs. 7 reads and 1 write)
● Up to ~4x speedup over a naive version (theoretically)



Stencil
Naive

1 thread per point

3-D thread blocks and grid (but the data is in 1-D)



Stencil

int tidx, tidy, tidz, gid;
tidx = threadIdx.x + blockDim.x * blockIdx.x;
tidy = threadIdx.y + blockDim.y * blockIdx.y;
tidz = threadIdx.z + blockDim.z * blockIdx.z;
gid = tidz * N * N + tidy * N + tidx; // data is laid out in 1-D

if(tidx < N && tidy < N && tidz < N) {
  tmp0 = c0 * In[gid];
  tmp1 = 0.0;
  if((tidx – 1) >= 0) tmp1 += In[tidz * N * N + tidy * N + (tidx – 1)];
  if((tidx + 1) < N)  tmp1 += In[tidz * N * N + tidy * N + (tidx + 1)];
  if((tidy – 1) >= 0) tmp1 += In[tidz * N * N + (tidy – 1) * N + tidx];
  if((tidy + 1) < N)  tmp1 += In[tidz * N * N + (tidy + 1) * N + tidx];
  if((tidz – 1) >= 0) tmp1 += In[(tidz – 1) * N * N + tidy * N + tidx];
  if((tidz + 1) < N)  tmp1 += In[(tidz + 1) * N * N + tidy * N + tidx];
  Out[gid] = tmp0 + c1 * tmp1;
}



Stencil

Version N Performance (GP/s) Speedup

Naive 512 2.00 1.0



Stencil

Issues

Data reuse occurs only through the (small) L1 and L2 cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?



Stencil

Issues

Data reuse occurs only through the (small) L1 and L2 cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?

● Increasing data reuse can increase performance by up to 4×
● Non-coalesced access only occurs when accessing (x + 1) and 

(x – 1) neighbors but not when accessing the y or z neighbors
● Thread divergence only occurs at the volume surface (all 

threads must still pay the penalty of checking its tidx, tidy, and 
tidz values)



Stencil

Issues

Data reuse occurs only through the L2 (very small) cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?

● Increasing data reuse can increase performance by up to 4×
● Non-coalesced access only occurs when accessing (x + 1) and 

(x – 1) neighbors but not when accessing the y or z neighbors
● Thread divergence only occurs at the volume surface (all 

threads must still pay the penalty of checking its tidx, tidy, and 
tidz values)



Stencil

Issues

Data reuse occurs only through the L2 (very small) cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?

● Increasing data reuse can increase performance by up to 4×
● Non-coalesced access only occurs when accessing (x + 1) and (x 

– 1) neighbors but not when accessing the y or z neighbors
● Thread divergence only occurs at the volume surface (all threads 

must still pay the penalty of checking its tidx, tidy, and tidz values)



Stencil

Cache line

Cache line

Cache line

...

If cache line is (8 bytes x 8) = 64 bytes



Stencil

If cache line is (8 bytes x 8) = 64 bytes

y - 1 neighbors

y + 1 neighbors

target



Stencil

If cache line is (8 x 8) = 64 bytes

x + 1 neighbor 
(2 cache lines)



Stencil

If cache line is (8 x 8) = 64 bytes

x - 1 neighbor 
(2 cache lines)



Stencil
Increasing data reuse can increase performance by up to 4×

Solution?



Stencil

Increasing data reuse can increase performance by up to 4×

Solution?

● Use shared memory to reuse the data
● Store a sub-volume of the data in shared memory, along with 

the elements in the boundary (a.k.a. halo region)
● Halo region is still being loaded redundantly (i.e., neighboring 

tiles are also loading the halo region)
● Which is better - bigger tiles or smaller tiles?



Stencil

Increasing data reuse can increase performance by up to 4×

Solution?

● Use shared memory to reuse the data
● Store a sub-volume of the data in shared memory, along with 

the elements in the boundary (a.k.a. halo region)
● Halo region is still being loaded redundantly (i.e., neighboring 

tiles are also loading the halo region)
● Which is better - bigger tiles or smaller tiles?
● Bigger tiles are better - smaller surface-to-volume 

ratio (i.e., compared to the required data, redundant 
data volume is smaller)



Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx; // data laid out in 1-D
smem[tidy + 1][tidx + 1] = In[gid];

Using code for 2-D stencil for simplicity



Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)



Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)
  smem[tidy+1][0]=In[gidy*N+(gidx–1)];



Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)
  smem[tidy+1][0]=In[gidy*N+(gidx–1)];
if(tidx == (blockDim.x – 1))
  smem[tidy+1][NT+1]=In[gidy*N+(gidx+1)];



Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)
  smem[tidy+1][0]=In[gidy*N+(gidx–1)];
if(tidx == (blockDim.x – 1))
  smem[tidy+1][NT+1]=In[gidy*N+(gidx+1)];
if(tidy == 0)
  smem[0][tidx+1]=In[(gidy-1)*N+gidx];
if(tidy == (blockDim.y – 1))
  smem[NT+1][tidx+1]=In[(gidy+1)*N+gidx];
__syncthreads();



Stencil



Stencil



Stencil



Stencil



Stencil

Version N Performance (GP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4



Stencil Issues?



Stencil
Issues

Halo region is (still) redundant

Thread divergence



Stencil

Issues

Halo region is (still) redundant

Thread divergence



Stencil

Have threads in the same warp load 
halo to shared memory



Stencil

Have threads in the same warp load 
halo to shared memory



Stencil

Version N Performance (TP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4

Non-divergent threads 512 2.85 1.43



Stencil

Small speedup - why?

● This only eliminates the serialization of the memory requests
● The data is still loaded from different cache lines (uncoalesced 

access)
● This is a bandwidth-bound kernel where loading data from the 

memory is the bottleneck - how do you maximize data 
reduction further?



Stencil

Blocking (2.5D blocking)

Block data in the X-Y plane and “stream” along the Z dimension



Blocking (2.5D blocking)

Block data in the X-Y plane and “stream” along the Z dimension

We now have T’ x T’ thread blocks instead of T’xT’xT’

Each thread now computes N points along the Z plane (instead of just 1)

Stencil



Stencil

Benefits?

● We only have to “pay” for halo along the X and Y dimensions
● Allows for larger X-Y block which reduces the surface to 

volume ratio
● Fewer thread blocks (lower scheduling cost)
● Better resource utilization (possibly)



Stencil

Version N Performance (TP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4

Non-divergent threads 512 2.85 1.43

2.5D 512 4.06 2.03



Stencil

Can we further optimize this?

● Store 1 slice (as opposed to keeping 1 old and 1 new slice)  and 
keep temporary running sums (in register)

● Lower shared memory usage -> possibly more threads 
resident in each SMX and better latency hiding

● No shifting of data required (swapping new and old 
slices)



Stencil

Version N Performance (TP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4

Non-divergent threads 512 2.85 1.43

2.5D 512 4.06 2.03

2.5D with single slice 512 4.37 2.19



Questions?


