
CIS 431/531
Intro to Parallel Computing
CUDA

1. Write a CUDA kernel to calculate Pi using the area of a circle
method. The following OpenMP code is provided as a reference. (10
minutes).

You may also need to use double atomicAdd(double* address, double val);

 double step, x, y, pi;
 double sum = 0.0;
 step = 1.0/(double) num_steps;
 for (int i = 0; i < num_steps; i++) {
 x = i * step;
 y = sqrt(1 - x * x);
 sum = sum + y * step;
 }
 pi = 4 * sum;
 return pi;

Quiz

2. If the memory bandwidth of a GPU is 100 GB/s (100 * 10^9
bytes/second) and the time it takes to move data from the DRAM
to the core is 200 ns (200 * 10^-9 seconds), how many in-flight
memory requests of 4 bytes are needed to saturate the bandwidth?
(5 minutes).

Quiz

Previously

CUDA programming

● Thread hierarchy
● Memory hierarchy
● Synchronization

Performance tips

● Many threads should be created to increase latency hiding
(both for instructions and data)

● Data should be accessed in a coalesced manner
● Shared memory should be used for

● storing data that is reused frequently
● accessing data in a non-coalesced manner in the

shared memory so that access to DRAM can be done
in a coalesced manner (e.g., matrix transpose)

Example

● In the matrix transpose example, using the shared memory
properly can lead to > 3x speedup in performance

Reduction
Commonly used algorithm in many applications

How do we parallelize it?

Reduction

Commonly used algorithm in many applications

How do we parallelize it?

● Tree-based approach
● Each thread reduces a portion
● Global synchronization is required to communicate partial

results between thread blocks

Reduction

Thread block 0 Thread block 1 Thread block 2 Thread block 3

Reduction

Performance Target?

Arithmetic Intensity = 1 flop / 4 bytes = 0.25

Memory bandwidth-bound

Performance on Talaps?

~170 GB/s

Reduction

Version 1 - Interleaved addressing

This is for a single thread block - each thread block generates a single reduced value
Many thread blocks are doing the same thing over their sequence of elements

Reduction

__global__ void reduce (const int* In, int* Out)
{
 int tid = threadIdx.x; // Local thread ID
 int i = blockIdx.x*blockDim.x + tid; // Global index

 extern __shared__ int Local[];
 Local[tid] = In[i]; // Load into shared mem
 __syncthreads ();

 // Reduce data in shared memory within a thread block
 for (int s = 1; s < blockDim.x; s*=2) {
 if (tid % (2*s) == 0) // Is multiple of s (2, 4, 8, …)
 Local[tid] += Local[tid + s];
 __syncthreads ();
 }

 if (tid == 0) Out[blockIdx.x] = Local[0]; // Each thread
block generates a single value
}

Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing 16M 8.69 1.0

Reduction

Reduction

Version 2 - Non-divergent branching

Reduction

__global__ void reduce (const int* In, int* Out)
{
 int tid = threadIdx.x; // Local thread ID
 int i = blockIdx.x*blockDim.x + tid; // Global index

 extern __shared__ int Local[];
 Local[tid] = In[i]; // Load into shared mem
 __syncthreads ();

for (int s = 1; s < blockDim.x; s*=2) { // Element stride
 int index = 2*s*tid; // Thread ID stride
 if (index < blockDim.x) {
 Local[tid] += Local[tid + s];
 }
 __syncthreads ();
}

 if (tid == 0) Out[blockIdx.x] = Local[0];
}

Simply remapping
threads to work

Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing
(divergent branching)

16M 8.69 1.0

Non-divergent branching 16M 12.29 1.4

Reduction

Reduction

Version 3 - Sequential addressing

Reduction

__global__ void reduce (const int* In, int* Out)
{
 int tid = threadIdx.x; // Local thread ID
 int i = blockIdx.x*blockDim.x + tid; // Global index

 extern __shared__ int Local[];
 Local[tid] = In[i]; // Load into shared mem
 __syncthreads ();

 for (int s = blockDim.x / 2; s > 0; s>>=1) {
 if (tid < s) {
 Local[tid] += Local[tid + s];
 }
 __syncthreads ();
 }

 if (tid == 0) Out[blockIdx.x] = Local[0];
}

Simply change
which elements are
being added

Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing 16M 16.81 1.9

Reduction

Only half the threads are “working”

Reduction

First add during load

● While loading the data, add the numbers
● Reduces the number of threads by half
● Double the number of memory requests

● Fewer threads are “wasted.”

Reduction

__global__ void reduce (const int* In, int* Out)
{
 int tid = threadIdx.x; // Local thread ID
 int i = blockIdx.x*blockDim.x + tid; // Global index

 extern __shared__ int Local[];
 Local[tid] = In[i] + In[i + blockDim.x];
 __syncthreads ();

 for (int s=blockDim.x/2; s>0; s>>=1) {
 if (tid < s) {
 Local[tid] += Local[tid + s];
 }
 __syncthreads ();
 }

 if (tid == 0) Out[blockIdx.x] = Local[0];
}

Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6

Questions?

So far, we have

● Reduce branching
● Bank conflicts
● Reduce # of non-working threads

What else can we do?

Reduction

With each iteration, the number of working threads (t) halves

When t < 32, only 1 warp is left

● We do not need __syncthreads()
● Granularity of execution is a warp - threads in a warp

are executing in a lock-step manner (i.e., already
synchronized)

● We do not need conditionals

Unroll the loop when t <= 32

for (unsigned int s=blockDim.x / 2; s > 32; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}
if (tid < 32) {

sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];

}

Reduction

Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6

Unroll the last loop 16M 50.65 5.8

Reduction

If we know the # of iterations at compile time, we could try unrolling
the loop completely

● Block sizes are typically power of 2
● Limit your block size to 512 (it used to be max, but now it’s

1024)
● Use C++ templates

Reduction

template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)

if (blockSize >= 512) {
if (tid < 256) { sdata[tid] += sdata[tid + 256]; }

__syncthreads();
}
if (blockSize >= 256) {

if (tid < 128) { sdata[tid] += sdata[tid + 128]; }
__syncthreads();
}
if (blockSize >= 128) {

if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads();
}
if (tid < 32) {

if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= sdata[tid] += sdata[tid + 1];

}

Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6

Unroll the last loop 16M 50.65 5.8

Complete unroll 16M 53.7 6.2

Reduction
Increase the number of adds per thread (we’ve seen this with
transpose, where each thread was responsible for 4 elements)

● Reduces thread block scheduling overhead
● Increases the number of memory requests

Reduction

__global__ void reduce (const int* In, int* Out)
{
 int tid = threadIdx.x; // Local thread ID
 int i = blockIdx.x*blockDim.x + tid; // Global index
 Int gridSize = gridDim.x * blockDim.x; // total number of threads

 extern __shared__ int Local[];
 Local[tid] = 0;
 while (i < n) {
 Local[tid] += In[i] + In[i+blockSize];
 i += gridSize;
 }
 __syncthreads();

 for (int s=blockDim.x/2; s>0; s>>=1) {
 if (tid < s) {
 Local[tid] += Local[tid + s];
 }
 __syncthreads ();
 }

 if (tid == 0) Out[blockIdx.x] = Local[0];
}

Reduction

Version N Bandwidth (GB/s) Speedup

Interleaved addressing
(divergent branching)

16M 8.69 1.0

Non-divergent branching
(bank conflicts)

16M 12.29 1.4

Sequential addressing
(wasted threads)

16M 16.81 1.9

First add during load 16M 31.25 3.6

Unroll the last loop 16M 50.65 5.8

Complete unroll 16M 53.7 6.2

More work per thread 16M 102.74 11.9

It is difficult to get the full bandwidth since you are writing & reading from
intermediate arrays multiple times

Questions?

Stencil

Found in many scientific applications

● PDE, systems of linear equations (e.g., Jacobi, Gauss-Siedel),
convolution filter, etc.

7-point (3-D) stencil

● For each point (i, j, k) in a NxNxN grid

Stencil

Stencil

Performance

● Naively, each point requires
● 7 reads and 1 write
● 8 flops
● I = 8 / (8 * 4) = 0.25
● Memory bandwidth-bound

Optimally

● Load data only once per point (and reuse it as many times as
needed)

● 1 read and 1 write (vs. 7 reads and 1 write)
● Up to ~4x speedup over a naive version (theoretically)

Stencil
Naive

1 thread per point

3-D thread blocks and grid (but the data is in 1-D)

Stencil

int tidx, tidy, tidz, gid;
tidx = threadIdx.x + blockDim.x * blockIdx.x;
tidy = threadIdx.y + blockDim.y * blockIdx.y;
tidz = threadIdx.z + blockDim.z * blockIdx.z;
gid = tidz * N * N + tidy * N + tidx; // data is laid out in 1-D

if(tidx < N && tidy < N && tidz < N) {
 tmp0 = c0 * In[gid];
 tmp1 = 0.0;
 if((tidx – 1) >= 0) tmp1 += In[tidz * N * N + tidy * N + (tidx – 1)];
 if((tidx + 1) < N) tmp1 += In[tidz * N * N + tidy * N + (tidx + 1)];
 if((tidy – 1) >= 0) tmp1 += In[tidz * N * N + (tidy – 1) * N + tidx];
 if((tidy + 1) < N) tmp1 += In[tidz * N * N + (tidy + 1) * N + tidx];
 if((tidz – 1) >= 0) tmp1 += In[(tidz – 1) * N * N + tidy * N + tidx];
 if((tidz + 1) < N) tmp1 += In[(tidz + 1) * N * N + tidy * N + tidx];
 Out[gid] = tmp0 + c1 * tmp1;
}

Stencil

Version N Performance (GP/s) Speedup

Naive 512 2.00 1.0

Stencil

Issues

Data reuse occurs only through the (small) L1 and L2 cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?

Stencil

Issues

Data reuse occurs only through the (small) L1 and L2 cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?

● Increasing data reuse can increase performance by up to 4×
● Non-coalesced access only occurs when accessing (x + 1) and

(x – 1) neighbors but not when accessing the y or z neighbors
● Thread divergence only occurs at the volume surface (all

threads must still pay the penalty of checking its tidx, tidy, and
tidz values)

Stencil

Issues

Data reuse occurs only through the L2 (very small) cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?

● Increasing data reuse can increase performance by up to 4×
● Non-coalesced access only occurs when accessing (x + 1) and

(x – 1) neighbors but not when accessing the y or z neighbors
● Thread divergence only occurs at the volume surface (all

threads must still pay the penalty of checking its tidx, tidy, and
tidz values)

Stencil

Issues

Data reuse occurs only through the L2 (very small) cache

Non-coalesced memory access

Thread divergence

Which is the biggest problem?

● Increasing data reuse can increase performance by up to 4×
● Non-coalesced access only occurs when accessing (x + 1) and (x

– 1) neighbors but not when accessing the y or z neighbors
● Thread divergence only occurs at the volume surface (all threads

must still pay the penalty of checking its tidx, tidy, and tidz values)

Stencil

Cache line

Cache line

Cache line

...

If cache line is (8 bytes x 8) = 64 bytes

Stencil

If cache line is (8 bytes x 8) = 64 bytes

y - 1 neighbors

y + 1 neighbors

target

Stencil

If cache line is (8 x 8) = 64 bytes

x + 1 neighbor
(2 cache lines)

Stencil

If cache line is (8 x 8) = 64 bytes

x - 1 neighbor
(2 cache lines)

Stencil
Increasing data reuse can increase performance by up to 4×

Solution?

Stencil

Increasing data reuse can increase performance by up to 4×

Solution?

● Use shared memory to reuse the data
● Store a sub-volume of the data in shared memory, along with

the elements in the boundary (a.k.a. halo region)
● Halo region is still being loaded redundantly (i.e., neighboring

tiles are also loading the halo region)
● Which is better - bigger tiles or smaller tiles?

Stencil

Increasing data reuse can increase performance by up to 4×

Solution?

● Use shared memory to reuse the data
● Store a sub-volume of the data in shared memory, along with

the elements in the boundary (a.k.a. halo region)
● Halo region is still being loaded redundantly (i.e., neighboring

tiles are also loading the halo region)
● Which is better - bigger tiles or smaller tiles?
● Bigger tiles are better - smaller surface-to-volume

ratio (i.e., compared to the required data, redundant
data volume is smaller)

Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx; // data laid out in 1-D
smem[tidy + 1][tidx + 1] = In[gid];

Using code for 2-D stencil for simplicity

Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)

Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)
 smem[tidy+1][0]=In[gidy*N+(gidx–1)];

Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)
 smem[tidy+1][0]=In[gidy*N+(gidx–1)];
if(tidx == (blockDim.x – 1))
 smem[tidy+1][NT+1]=In[gidy*N+(gidx+1)];

Stencil

int tidx, tidy, gidx, gidy;
__shared__ float smem[NT + 2][NT + 2];
tidx = threadIdx.x; tidy = threadIdx.y;
gidx = tidx + blockDim.x * blockIdx.x;
gidy = tidy + blockDim.y * blockIdx.y;
gid = gidy * N + gidx;
smem[tidy + 1][tidx + 1] = In[gid];
if(tidx == 0)
 smem[tidy+1][0]=In[gidy*N+(gidx–1)];
if(tidx == (blockDim.x – 1))
 smem[tidy+1][NT+1]=In[gidy*N+(gidx+1)];
if(tidy == 0)
 smem[0][tidx+1]=In[(gidy-1)*N+gidx];
if(tidy == (blockDim.y – 1))
 smem[NT+1][tidx+1]=In[(gidy+1)*N+gidx];
__syncthreads();

Stencil

Stencil

Stencil

Stencil

Stencil

Version N Performance (GP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4

Stencil Issues?

Stencil
Issues

Halo region is (still) redundant

Thread divergence

Stencil

Issues

Halo region is (still) redundant

Thread divergence

Stencil

Have threads in the same warp load
halo to shared memory

Stencil

Have threads in the same warp load
halo to shared memory

Stencil

Version N Performance (TP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4

Non-divergent threads 512 2.85 1.43

Stencil

Small speedup - why?

● This only eliminates the serialization of the memory requests
● The data is still loaded from different cache lines (uncoalesced

access)
● This is a bandwidth-bound kernel where loading data from the

memory is the bottleneck - how do you maximize data
reduction further?

Stencil

Blocking (2.5D blocking)

Block data in the X-Y plane and “stream” along the Z dimension

Blocking (2.5D blocking)

Block data in the X-Y plane and “stream” along the Z dimension

We now have T’ x T’ thread blocks instead of T’xT’xT’

Each thread now computes N points along the Z plane (instead of just 1)

Stencil

Stencil

Benefits?

● We only have to “pay” for halo along the X and Y dimensions
● Allows for larger X-Y block which reduces the surface to

volume ratio
● Fewer thread blocks (lower scheduling cost)
● Better resource utilization (possibly)

Stencil

Version N Performance (TP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4

Non-divergent threads 512 2.85 1.43

2.5D 512 4.06 2.03

Stencil

Can we further optimize this?

● Store 1 slice (as opposed to keeping 1 old and 1 new slice) and
keep temporary running sums (in register)

● Lower shared memory usage -> possibly more threads
resident in each SMX and better latency hiding

● No shifting of data required (swapping new and old
slices)

Stencil

Version N Performance (TP/s) Speedup

Naive 512 2.00 1.0

Shared memory 512 2.79 1.4

Non-divergent threads 512 2.85 1.43

2.5D 512 4.06 2.03

2.5D with single slice 512 4.37 2.19

Questions?

