
CIS 431/531
Intro to Parallel Computing
Collectives & Message Passing Interface (MPI)

Collectives

Collective operations deal with a collection of data as a whole, rather
than as separate elements

Collective patterns include

Reduce (Parallel Patterns - parallel control patterns)

Scan (Parallel Patterns - parallel control patterns)

Scatter (Parallel Patterns - parallel data management patterns)

Gather (Parallel Patterns - parallel data management patterns)

Reduce

Reduce is used to combine a collection of elements into one
summary value

A combiner function combines elements pairwise - it only needs to
be associative to be parallelizable

A + (B + C) = (A + B) + C

A + B + C + D = (A + B) + (C + D)

Examples of combiner functions

Add (e.g., prefix-sum)

Multiplication

Max/min

Reduce

Reduce

Vectorization (serially)

Reduce

Tiling - break work into “chunks” and then reduce (serially)

Map & Reduce

Map - perform a function over every element of a collection of data

Example - scaling an array by a constant or adding two arrays

We can also combine different patterns together

Example: Dot product

Input(s)

Function

Output

Prefix-sum Is prefix sum a reduction?

Scan

The scan collective produces partial reduction of input sequence to
generate a new sequence

Trickier to parallelize than reduce

Inclusive vs. exclusive

Inclusive - includes current element in partial reduction

Exclusive - excludes current element in partial reduction &
partial reduction is of all prior elements (to the current element)

Is prefix-sum inclusive or exclusive?

Scan
One (parallel) algorithm for up sweep and one for down sweep

Down sweep - compute intermediate results

Up sweep - compute reduction

Scan
(prefix-sum)

Scan

Calculating the max value

Scan

Three-phase scan with tiling

Reduce

Exclusive
scan

Scan

Scan

Three-phase scan with tiling

Reduce

Exclusive
scan

Scan

1 4 0 2 7 2 4 3 1 2 8 2 4 3 1 4 0

1 5 5 7 14 16 20 23 24 26 34 36 40 43 44 46 46

1 13 10 16

14 24 40

Scatter &
Gather

Gather - collecting a bunch of randomly located data and putting
them together in a packed form

Requires a sequence of random reads (but consecutive writes)

Scatter &
Gather

Scatter - inverse of gather, write to random locations from
consecutive/packed address locations

Requires a sequence of random writes (but consecutive reads)

Will these operations be efficient on modern memory systems? Why
or why not?

Questions?

Distributed-
memory
systems

How do the nodes communicate?

MPI

Specification for the message passing library

● Different vendors have different implementations
● Different MPI library implementations support different MPI

versions/features
● Objectives

● Practical
● Portable
● Efficient
● Flexible

Latest MPI version - 4.1 (approved Nov. 2, 2023)

MPI Libraries

MPI Library System Compilers

MVAPICH Linux clusters GNU, Intel, PGI, Clang

OpenMPI Linux clusters GNU, Intel, PGI, Clang

Intel MPI Linux clusters Intel, GNU

IBM BG/Q MPI BG/Q Clusters IBM, GNU

IBM Spectrum MPI Coral and Summit IBM, GNU, PGI, Clang

Module
[jeec@talapas-ln1 ~]$ module list

Currently Loaded Modules:
 1) slurm/19.05 2) intel/17 3) openmpi/2.1 4) mkl 5) cuda/9.2

Compiling
MPI Code

mpic++ -c -g -W -Wall -std=c++14 -fopenmp -DDEBUG=1 ping_pong.cc -o ping_pong.o
mpic++ -g -W -Wall -std=c++14 -fopenmp -DDEBUG=1 -o pp ping_pong.o

mpi_test.batch
#!/bin/bash
#SBATCH --account=cis431_531 ### your charge account
#SBATCH --partition=compute ### queue to submit to
#SBATCH --job-name=mpi_test ### job name
#SBATCH --output=output/mpi_test_%A.out ### file in which to store job stdout
#SBATCH --error=output/mpi_test_%A.err ### file in which to store job stderr
#SBATCH --time=5 ### wall-clock time limit, in minutes
#SBATCH --mem=64000M ### memory limit per node, in MB
#SBATCH --nodes=2 ### number of nodes to use
#SBATCH --ntasks-per-node=28 ### number of tasks to launch per node
#SBATCH --cpus-per-task=1 ### number of cores for each task

mpirun -np $SLURM_NTASKS ./merge 100000000 1000

Simple Linux Utility for Resource Management (SLURM)
open source cluster management and job scheduling system

Executing MPI
Code

MPI Task
Placement

Two popular strategies for parallelizing code using MPI

Exclusively MPI

Parallelize the code at the MPI task level such that each MPI
task is assigned to one core

For example, if you are running an application on 3 nodes, each
with 28 cores, you can create 3x28 = 84 MPI tasks, each task running
on a single core

#SBATCH --nodes=3 ### number of nodes to use
#SBATCH --ntasks-per-node=28 ### number of tasks to launch per node
#SBATCH --cpus-per-task=1 ### number of cores for each task

MPI+OpenMP Hybrid Method

Create 1 MPI task per node

Within each node, use OpenMP to parallelize the code

#SBATCH --nodes=3 ### number of nodes to use
#SBATCH --ntasks-per-node=1 ### number of tasks to launch per node
#SBATCH --cpus-per-task=28 ### number of cores for each task

Basics

int MPI_Send(const void *buf,

 int count,

 MPI_Datatype datatype,

 int dest,

 int tag,

 MPI_Comm comm)

int MPI_Recv(void *buf,

 int count,

 MPI_Datatype datatype,

 int source,

 int tag,

 MPI_Comm comm,

 MPI_Status * status)

These are blocking communication primitives - functions blocks
until function is successfully completed

Basics

Elementary MPI Datatypes

Simple
Point-to-Point
Communication

 // Initialize MPI
 MPI_Init(NULL, NULL);

 // Current rank's ID
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 // Total number of ranks
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 … Some code …

 // Finish MPI
 MPI_Finalize();

Simple
Point-to-Point
Communication

 cout << "My rank is " << world_rank << endl;
 cout << "My world is " << world_size << endl;

 int number;
 // If my rank is 0, send data
 if(world_rank == 0) {
 number = -1;
 MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 // If my rank is 1, receive data
 } else if(world_rank == 1) {
 MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 cout << "Process 1 received number " << number <<
 " from process 0" << endl;
 }

Remember...
int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status * status)

Simple
Point-to-Point
Communication

My rank is 0
My world is 2
My rank is 1
My world is 2
Process 1 received number -1 from process 0

Simple
Point-to-Point
Communication

// Assume 2 ranks
 int pp_count = 0;
 int partner_rank = (world_rank + 1) % 2;
 while(pp_count < PP_MAX) {
 if(world_rank == (pp_count % 2)) {
 pp_count++;
 MPI_Send(&pp_count, 1, MPI_INT, partner_rank, 0, MPI_COMM_WORLD);
 cout << world_rank << " sent and incremented pp_count " << pp_count
 << " to " << partner_rank << endl;
 } else {
 MPI_Recv(&pp_count, 1, MPI_INT, partner_rank, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);
 cout << world_rank << " received pp_count " << pp_count << " from "
 << partner_rank << endl;
 }
 cout << "My rank is " << world_rank << " and I have " << pp_count
 << endl;
 }

Simple
Point-to-Point
Communication

0 sent and incremented pp_count 1 to 1
My rank is 0 and I have 1
0 received pp_count 2 from 1
My rank is 0 and I have 2
0 sent and incremented pp_count 3 to 1
My rank is 0 and I have 3
...
0 sent and incremented pp_count 9 to 1
My rank is 0 and I have 9
0 received pp_count 10 from 1
My rank is 0 and I have 10

1 received pp_count 1 from 0
My rank is 1 and I have 1
1 sent and incremented pp_count 2 to 0
My rank is 1 and I have 2
1 received pp_count 3 from 0
My rank is 1 and I have 3
...
1 received pp_count 9 from 0
My rank is 1 and I have 9
1 sent and incremented pp_count 10 to 0
My rank is 1 and I have 10

Simple
Point-to-Point
Communication

What is happening here?

 int token;
 if(world_rank != 0) {
 MPI_Recv(&token, 1, MPI_INT, world_rank - 1, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);
 } else {
 token = -1;
 }

 MPI_Send(&token, 1, MPI_INT, (world_rank + 1) % world_size, 0,
 MPI_COMM_WORLD);

 if(world_rank == 0) {
 MPI_Recv(&token, 1, MPI_INT, world_size - 1, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);
 cout << "Process " << world_rank << " received token " << token
 << " from process " << world_size - 1 << endl;
 }

Simple
Point-to-Point
Communication

With 4 nodes:
Process 0 received token -1 from process 3

Dynamic
Receive

MPI Status

● You can ignore it with MPI_STATUS_IGNORE
● Pass in a structure which will be populated with information

about the receive operation after completion
● Rank of the sender
● Tag of the message
● Length of the message (using MPI_Get_count function)

● Why?
● MPI_Recv can actually take MPI_ANY_SOURCE and

MPI_ANY_TAG for those parameters
● In these cases, MPI status is the only way to figure out the

rank and tag

Dynamic
Receive

MPI_Status stat;

if(rank){

 int someval = 0;

 MPI_Sendrecv(&someval, 1, MPI_INT, 0, 1, &recvbuf, 1, MPI_INT, 0, MPI_ANY_TAG,

 MPI_COMM_WORLD, &stat);

} else {

 int someotherval = 1;

 MPI_Recv(&recvbuf, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

 MPI_Send(&someotherval, 1, MPI_INT, stat.MPI_SOURCE, someotherval, MPI_COMM_WORLD);

}

Any problems?

 const int MAX_NUMBER = 100;
 int numbers[MAX_NUMBER];
 int number_amount;
 if (world_rank == 0) {
 // Pick a random amount of integers to send to process one
 srand(time(NULL));
 number_amount = (rand() / (float)RAND_MAX) * MAX_NUMBER;

 // Send the amount of integers to process one
 MPI_Send(numbers, number_amount, MPI_INT, 1, 0, MPI_COMM_WORLD);
 cout << "0 sent " << number_amount << " numbers to 1" << endl;
 ...

Dynamic
Receive

Sending arbitrary amount of data

Dynamic
Receive

 } else if (world_rank == 1) {
 MPI_Status status;

 // First, use probe to get status
 MPI_Probe(0, 0, MPI_COMM_WORLD, &status);

 // After receiving the status, check to determine
 // how many numbers were actually received
 MPI_Get_count(&status, MPI_INT, &number_amount);

 // Allocate a buffer to hold the incoming numbers
 int* number_buf = (int*) malloc(sizeof(int) * number_amount);

 // Receive at most MAX_NUMBER from process zero
 MPI_Recv(number_buf, number_amount, MPI_INT, 0, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);

 // Print off the amount of numbers, and also print additional
 // information in the status object
 cout << "1 dynamically received " << number_amount
 << " numbers from 0. Message"
 << " source = " << status.MPI_SOURCE
 << ", tag = " << status.MPI_TAG << endl;

 free(number_buf);
 }

Dynamic
Receive

0 sent 72 numbers to 1
1 dynamically received 72 numbers from 0. Message source = 0, tag = 0

Example -
Random Walk

Given a min and max, a random walker W takes S random walks of
arbitrary lengths to the right on a line

If W goes out of bounds, W wraps around

Example -
Random Walk

Assuming min of 0 and max of 20 with 4 processes

W takes a single walk of size 6 to the right, starting from position 0

At step 4, it goes out of bounds for process 0

Process 0 must now communicate this to process 1, and process 1
continues the walk

Example -
Random Walk

Each process is in charge of their part of the domain (domain
decomposition)

Each process initializes N walkers, each starting from the beginning
of their local domain

Each process has two values - current position of the walker, and
number of steps to take

Walkers are traversing through the domain and are passed to other
processes until they complete their walk

Processes end when ALL walkers have finished

 domain_size = atoi(argv[1]);

 max_walk_size = atoi(argv[2]);

 num_walkers_per_proc = atoi(argv[3]);

void decompose_domain(int domain_size, int world_rank,

 int world_size, int* subdomain_start,

 int* subdomain_size) {

 if (world_size > domain_size) {

 // Don't worry about this special case. Assume the domain

 // size is greater than the world size.

 MPI_Abort(MPI_COMM_WORLD, 1);

 }

 *subdomain_start = domain_size / world_size * world_rank;

 *subdomain_size = domain_size / world_size;

 if (world_rank == world_size - 1) {

 // Give remainder to last process

 *subdomain_size += domain_size % world_size;

 }
}

Example -
Random Walk

typedef struct {

 int location;

 int num_steps_left_in_walk;

} Walker;

void initialize_walkers(int num_walkers_per_proc, int max_walk_size,

 int subdomain_start, int subdomain_size,

 vector<Walker>* incoming_walkers) {

 Walker walker;

 for (int i = 0; i < num_walkers_per_proc; i++) {

 // Initialize walkers in the middle of the subdomain

 walker.location = subdomain_start;

 walker.num_steps_left_in_walk =

 (rand() / (float)RAND_MAX) * max_walk_size;

 incoming_walkers->push_back(walker);

 }
}

Example -
Random Walk

void walk(Walker* walker, int subdomain_start, int subdomain_size,

 int domain_size, vector<Walker>* outgoing_walkers) {

 while (walker->num_steps_left_in_walk > 0) {

 if (walker->location == subdomain_start + subdomain_size) {

 // Take care of the case when the walker is at the end

 // of the domain by wrapping it around to the beginning

 if (walker->location == domain_size) {

 walker->location = 0;

 }

 outgoing_walkers->push_back(*walker);

 break;

 } else {

 walker->num_steps_left_in_walk--;

 walker->location++;

 }

 }
}

Example -
Random Walk

void send_outgoing_walkers(vector<Walker>* outgoing_walkers,

 int world_rank, int world_size) {

 // Send the data as an array of MPI_BYTEs to the next process.

 // The last process sends to process zero.

 MPI_Send((void*)outgoing_walkers->data(),

 outgoing_walkers->size() * sizeof(Walker), MPI_BYTE,

 (world_rank + 1) % world_size, 0, MPI_COMM_WORLD);

 // Clear the outgoing walkers

 outgoing_walkers->clear();
}

Example -
Random Walk

Example -
Random Walk

void receive_incoming_walkers(vector<Walker>* incoming_walkers,

 int world_rank, int world_size) {

 MPI_Status status;

 // Receive from the process before you.

 int incoming_rank =

 (world_rank == 0) ? world_size - 1 : world_rank - 1;

 MPI_Probe(incoming_rank, 0, MPI_COMM_WORLD, &status);

 // Resize your incoming walker buffer

 int incoming_walkers_size;

 MPI_Get_count(&status, MPI_BYTE, &incoming_walkers_size);

 incoming_walkers->resize(

 incoming_walkers_size / sizeof(Walker));

 MPI_Recv((void*)incoming_walkers->data(), incoming_walkers_size,

 MPI_BYTE, incoming_rank, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);
}

Example -
Random Walk

1. Initialize the walkers.
2. Progress the walkers with the walk function.
3. Send out any walkers in the outgoing_walkers vector.
4. Receive new walkers and put them in the

incoming_walkers vector.
5. Repeat steps two through four until all walkers have

finished.

Example -
Random Walk

decompose_domain(domain_size, world_rank, world_size,

 &subdomain_start, &subdomain_size);

initialize_walkers(num_walkers_per_proc, max_walk_size,

 subdomain_start, subdomain_size,

 &incoming_walkers);

while (!all_walkers_finished) { // Determine walker completion later

 // Process all incoming walkers

 for (int i = 0; i < incoming_walkers.size(); i++) {

 walk(&incoming_walkers[i], subdomain_start, subdomain_size,

 domain_size, &outgoing_walkers);

 }

 // Send all outgoing walkers to the next process.

 send_outgoing_walkers(&outgoing_walkers, world_rank,

 world_size);

 // Receive all the new incoming walkers

 receive_incoming_walkers(&incoming_walkers, world_rank,

 world_size);
}

Example -
Random Walk Problems?

Example -
Random Walk

Problems?

Will they deadlock?

Problems?

● Will they deadlock?
● Perhaps - MPI Send blocks (until the send buffer can be used

for other purposes)
● This generally means that the data in the buffer has been

placed in some queue/buffer in the network to be sent out
● Or it could mean MPI has saved it elsewhere (this is

implementation dependent)

This code will LIKELY work

However, it may deadlock on some systems, so it is better to
make sure there are no way for deadlock to occur - how?

Example -
Random Walk

Example -
Random Walk

Even-numbered processes send, and odd numbered processes
receive

Can it still deadlock?

Example -
Random Walk

Even-numbered processes send, and odd numbered processes
receive

Can it still deadlock?

Yes - if there is only 1 process

do not use send/recv when there is only one process

Example -
Random Walk

What about if you have odd number of processes - will it still work?

Example -
Random Walk

What about if you have odd number of processes - will it still work?

How do we determine if the program has finished?

Have process 0 keep track of unfinished walkers, and tell others to stop

Requires additional communication

Example -
Random Walk

How do we determine if the program has finished?

int maximum_sends_recvs = max_walk_size / (domain_size / world_size) + 1;

for (int m = 0; m < maximum_sends_recvs; m++) {

 // Process all incoming walkers

 for (int i = 0; i < incoming_walkers.size(); i++) {

 walk(&incoming_walkers[i], subdomain_start, subdomain_size,

 domain_size, &outgoing_walkers);

 }

 // Send and receive if you are even and vice versa for odd

 if (world_rank % 2 == 0) {

 send_outgoing_walkers(&outgoing_walkers, world_rank, world_size);

 receive_incoming_walkers(&incoming_walkers, world_rank, world_size);

 } else {

 receive_incoming_walkers(&incoming_walkers, world_rank, world_size);

 send_outgoing_walkers(&outgoing_walkers, world_rank, world_size);

 }
}

Example -
Random Walk

Example -
Random Walk

Where is this used?

● Particle tracing
● Used to visualize flow fields
● Particles are inserted into the flow field and then traced

along the flow using numerical integration
● The traced particle can then be rendered for visualization
● Load balancing is tricky - you don’t know where particles will

end up

Questions

