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Abstract. Since their initial formulation
in the 1950s, Mixed Integer Linear Pro-
gramming (MILP) problems have con-
tinued to pose challenges in algorithmic
construction and efficient implementation.
Recent efforts solve the general MILP
problem using efficient parallel implemen-
tations and thousands of CPU cores.
This work summarizes the development
of the parallel branch-and-bound method
for solving MILP problems. We also dis-
cuss recent GPU implementations of re-
lated discrete optimization problems using
the branch-and-bound method in an at-
tempt to explore the feasibility of a GPU-
based solver for the general MILP prob-
lem.

1 Introduction

A wide range of scheduling, resource management,
and network optimization problems can be concisely
expressed by a set of variables with linear constraints
and an objective function. The problem is to find
values for all variables such that the constraints are
satisfied and the objective function is maximized (or,
equivalently, minimized). When the variables are al-
lowed to take on any real values, this type of problem
is known as Linear Programming (LP) and efficient,
polynomial-time algorithms exist to find an optimal
or near optimal solution [7, 35]. When some of the
variables are constrained to integer values, this type
of problem is known as Mixed Integer Programming
(MILP). The addition of this constraint increases the
difficulty of optimization, in fact, the MILP problem
is known to be NP-hard [39].

Due to this difficulty, the most efficient known ex-
act algorithms for MILP essentially search through a
tree of all possible assignments to integer variables,
using LP methods to optimize the non-linear vari-
ables at each step. While this strategy is accurate
and sufficient for small problem sizes, many practical
applications of MILP techniques generate massively
complex problems. For example, Friedman [23] casts
the problem of scheduling classes for a 4-year univer-
sity as a MILP with ∼170K variables and a similar
number of constraints. Solving this problem report-

edly takes up to 40 hours using the state-of-the-art
(though closed-source) Gurobi solver [2].

While some applications of MILP, such as class
scheduling, are not directly sensitive to solution
time, a large range of time-sensitive MILP applica-
tions have emerged in the operation of computer and
other transportation networks. A particular example
of such an application is the allocation of network
monitoring resources to effectively detect and mit-
igate an attack. In this application, resources must
be allocated across heterogeneous network devices
to gather the data needed to locate the perpetra-
tor. This allocation is subject to the diverse capabil-
ities of heterogeneous network devices and the goal
of minimizing the volume of reported information.
A recent proposal for such a system [28] incurs la-
tencies up to 30 minutes to compute the optimal re-
source allocation also using the Gurobi solver. This
overhead mitigates the potential effectiveness of this
system as 30 minutes is plenty of time for an at-
tacker to penetrate, download sensitive information,
and cover their tracks.

The large applicability of MILP for optimization
and emergent time-sensitive optimization problems,
such as the one described above, has lead to much
effort in developing efficient methods to solve ar-
bitrary MILPs on the available hardware architec-
tures. This work surveys these efforts with a fo-
cus on recent developments including the possibil-
ity of employing GPU architectures for some or all
of the work. We start in §2 with a precise defini-
tion of the MILP problem and high-level descrip-
tion of branch-and-bound and other proposed algo-
rithms. In §3 we discuss work in developing parallel
implementations of the branch-and-bound algorithm
developed originally by Land and Doig [32]. Par-
allel branch-and-bound implementations have been
reported to scale up to 80K CPU nodes [46]. The
computation power and ready availability of GPUs
has lead to several practical documented implemen-
tations of optimization problems on GPU architec-
tures [30, 51], however, to the best of our knowl-
edge there is no documented general-purpose MILP
solver capable of leveraging GPU architectures. In
§4 we highlight some recent implementations of the
branch-and-bound method for particular optimiza-
tion problems. We speculate that since this method



can also be adapted to solving the general case MILP
problem, these efforts might lead a path to a GPU-
based MILP solver.

In preparing the current work, we have leveraged
several prior efforts at summarizing the state-of-the-
art in optimization implementations. Of these prior
efforts the work of Ralphs [40] and Schryen [42]
provide excellent taxonomies of parallel implemen-
tations of the MILP problem, while Boyer [12]
and Schulz [43] summarize implementation issues
of specific optimization problems using GPU ar-
chitectures. As demonstrated by the 286 unsolved
MILP problems listed by MIPLIB2017 [3], this area
presents exciting theoretic and applied research chal-
lenges.

2 Background

Mixed Interger Linear Programming (MILP) is a
mathematical framework for formulating a wide va-
riety of optimization problems. In this framework,
optimization is formulated as minimizing (or max-
imizing) a linear combination of variables subject
to a set of constraints and the condition that some
variables must take only integral values. In essence,
MILP is a generalization of both Linear Program-
ming (LP), where all variables take real values, and
Integer Programming (IP), where all variables take
integer values. This section provides formal defini-
tions of the LP and MILP problems and discusses
several of the still relevant historic algorithms for
these problems.

2.1 Linear Programming

LP has perhaps the richest history among all opti-
mization problems, dating back to 1947 [18]. Follow-
ing loosely the notation of Ralphs [40], the standard
form for expressing an LP problem is as follows:

min
x∈F

cTx (1)

s.t. F ={x ∈ Rn | Ax ≤ b} (2)

where A ∈ Rmxn and b ∈ Rm describe the con-
straints on the variables x1, . . . , xn and c ∈ Rn spec-
ifies the objective function. A setting of x which sat-
isfies (2) is known as a feasible solution and a setting
of x which satisfies both (1) and (2) is known as an
optimal solution. The goal of a linear programming
application is then to find the optimal solution given
the objective function and constraints or to report
that the problem is unbounded.

Most performant implementations of linear pro-
gramming are built on algorithms derived from

Dantzig’s original simplex method [17]. At a high
level, this method identifies that any optimal solu-
tion will fall on the edge of the n-dimensional polyhe-
dron defined by F . The method iteratively explores
the convex hull of F until the optimal solution is
found. The complexity of this algorithm is typically
measured in the number of iterations taken for a
given problem as a function of problem dimension-
ality.

While the worst case time complexity of the sim-
plex method is known to be exponential, for a wide
range or practical optimization problems, it executes
in near-linear time [44]. Probabilistic analysis [10,47]
demonstrates the average case time complexity is, in
fact, linear. Several other theoretic results support
the simplex method’s utility when the dimension is
fixed [19,36].

2.2 Mixed Integer Linear Programming

A useful restriction of the LP problem is to require
some of the variables to only take integer values. For
example, many scheduling problems deal with indi-
visible units of work. Again following the notation of
Ralphs [40], we can extend the definition of F from
above to include this constraint:

F ={x ∈ Rn | Ax ≤ b, xj ∈ Z, for all j ∈ I} (3)

where I ⊆ {1, . . . , n} indicates which of x0, . . . , xn

are constrained to integer values. Note that if I = ∅,
this is equivalent to the LP case and that if I =
{1, . . . , n}, it is equivalent to the IP case. Despite the
apparent similarity to LP, MILP and IP are actually
much harder problems. Because F might now not
be convex, essentially all possible assignments of the
integral variables must be checked with respect to
the optimization goal.

Several different approaches to the MILP problem
emerged [8,27], but the most effective to this day is
the branch and bound method, attributed originally
to Land and Doig [32]. At a high level, this method
first removes the integral constraints and solves what
is known as the LP relaxation of the MILP problem.
The method then searches through the set of fea-
sible solutions to the original MILP problem while
refining the maximum and minimum possible values
of the objective function. This search is carried out
on a tree of subproblems where subsequent layers of
the tree fix more and more of the required variables
to integer values. Bounds on the objective function
are computed for each subproblem using the LP re-
laxation on a partition of the original feasible region
as imposed by the integer values fixed in that sub
problem. Subproblems which cannot provide a more



optimal bound on the objective function can be dis-
carded, reducing the size of the search space. This
process is repeated until integer values have been
found for all variables in I.

Much work on optimizing this method in serial im-
plementations has been undertaken since the original
algorithmic development [29,34]. This work explores
the implications of different pre-processing, branch-
ing, searching, and heuristic techniques for improv-
ing performance of MILP solvers. Essentially, these
techniques seek to reduce the size of the tree that
must be explored, find the best order in which to
process nodes, and leverage the warm-start capabil-
ities of the simplex method typically used to solved
the underlying LP relaxation.

3 Parallel Solutions

As in other fields of computing, the end of increas-
ing clock speeds and the ready availability of par-
allel computing architectures has driven efforts to
efficiently parallelize MILP algorithms. Since the
branch-and-bound method introduced in section 2
essentially reduces to a tree search, it might seem to
be an easy candidate for parallel MILP implemen-
tations. However, particular features of the tree and
the operations required on each node in the search
make parallel implementations of branch-and-bound
quite difficult. This section summarizes the key al-
gorithmic challenges faced and discusses several im-
plementation strategies.

3.1 Algorithmic Challenges

While the branch-and-bound algorithm for solving
MILPs is a type of tree search algorithm, several
key details make it more challenging to parallelize
than seemingly similar tree searches (e.g., depth-
first-search). According to Ralphs [40], these details
can be summarized as follows.
Children are smaller than parents. Since chil-
dren are subproblems based on partitions of the orig-
inal feasible region, they are easier LP relaxations
to solve. Also, the overheads of many optimizations
(e.g., presolving [6]) manifest in the processing of the
root or parent nodes, leading to delays in the gen-
eration of enough children for parallelization to be
useful.
The tree is un-balanced and dynamic. Since the
branch-and-bound method eliminates child nodes
which cannot achieve a better optimum value of the
objective function, the tree generated by such meth-
ods are inherently unbalanced. Moreover, the shape

of the tree is not known before hand [38], exacerbat-
ing attempts to determine an optimal schedule on
the given compute resources.
Order determines efficiency. In theory, child
nodes can be processed in any order, but in prac-
tice [34], particular ordering of child nodes impact
the convergence time of the objective function. En-
forcing node processing order reduces the ability of
an implementation to leverage parallel resources.
Information must be shared between nodes.
Nodes must at least share their updated bounds at
the end of each iteration as this determines which
children will get dropped in the next iteration. Other
serial optimization (e.g., warm-starting the simplex
method or conflict analysis [4]) leverage sharing of
more detailed information from the LP relaxations
between child nodes to improve performance.

The above points are direct results of the partic-
ular tree search required by the branch-and-bound
algorithm and also results of the fact that efforts to
optimize serial implementations often create depen-
dencies which impeded the development of parallel
implementations.

3.2 Parallelization Strategies

At a high-level, all parallel branch-and-bound imple-
mentations must determine the granularity of work
to distribute as well as the method to distribute
and synchronize work among the available process-
ing units.

Here we described a simplification of the proper-
ties introduced by Ralphs [40] which build on two
prior surveys [25,33].
Work Granularity. The work of the branch-and-
bound algorithm can be divided among worker
threads at different levels or granularity: tree,
subtree, node, and subnode. Tree-level paralleliza-
tion [20] processes multiple trees with slightly dif-
ferent parameters in parallel, reporting the result of
the first to finish or aggregating across final results.
Subtree-level parallelization breaks up the global
search tree and hands subtrees to worker threads.
This approach facilitates sharing of information be-
tween nodes better than finer-grained solutions and
is favored in modern high performance implementa-
tions [52]. Node-level parallelization distributes the
operations required for individual nodes as units
of work. While this approach is popular [22, 41],
these implementations must carefully manage the
exchange of global state and synchronization among
nodes. Finally, some implementations advocate for
sub-node parallelism where the operations of pro-
cessing each node are split among multiple parallel



threads. For example, each node’s LP relaxation can
be solved using efficient LP implementations [24].

Distribution and Synchronization. The require-
ments for work distribution and synchronization
vary for the different granularities described above.
Under tree-level parallelization, little synchroniza-
tion is required and each iteration of the algorithm
can proceeded independently. As the granularity de-
creases, however, synchronization requirements be-
come more of a bottleneck.

Static work distribution schemes are challenging
to implement effectively since the shape of the tree
is not know in advance. As an exception, Fischetti
et al. [21] demonstrate almost linear speed up using
self-splitting workloads in the related constraint pro-
gramming problem. In their approach each worker
thread accesses the same data, but chooses which
nodes to process based on a sudo-random sequence.
At the outset, each thread’s random sequence is
seeded with a unique value so that work is dis-
tributed uniformly among workers w.h.p., regardless
of how un-balanced the search tree. As with other
static work distributions, this scheme has the advan-
tage of requiring barely any inter-thread communi-
cation.

Dynamic scheduling using variants of the master-
worker paradigm are far more common with many
high performance solutions. For example, CBC [22]
employs a master-worker architecture with node-
level or subtree-level granularity. To enforce consis-
tency of the global state, a synchronization period
is performed after each worker completes the as-
signed work. Another effort, BLISS [52] employs a
master-hub-worker model in the CHiPPS [1] frame-
work. This model reduces the bottleneck inherent at
the master node by placing intermediate hub nodes
between master and workers. BLISS also implements
load balancing at the subtree-level of granularity to
improve storage and communication costs.

Perhaps the largest scale deployment of paral-
lel MILP solvers are due to the work of Shinano
et al. [45] who parallelize the serial MILP solver
known as SCIP [5]. They use large distributed mem-
ory environments (e.g., the HLRN II supercom-
puter) to run multiple SCIP solvers on subproblems
(i.e., subtree-level parallelism) in a master-worker
paradigm. Workers that complete their subproblems
early are assigned unsolved nodes in a kind of cen-
trally managed work-stealing approach. The massive
scales possible with this implementation enable the
authors to solve 10 previously unsolved MILPs on
clusters with up to 80 000 cores [46].

Summary: All parallel implementations for the
branch-and-bound algorithm for MILP must deal

with the un-balanced search trees generated and
the need to share information between nodes of
the tree. These requirements motivate solutions
to seek dynamic scheduling solutions often using
master-worker variants and flexible partitioning of
the search tree among workers.

4 GPU Implementations

Increased availability, flexible programming models,
and computational power of modern GPUs has moti-
vated efforts to implement various optimization algo-
rithms on GPU-based systems [12,43]. While several
efforts have yielded efficient implementations of the
revised simplex method for the LP problem on GPU
systems [9,24,48], to the best of our knowledge there
is no equivalent general MILP implementation which
makes substantial use of GPU systems. Nonethe-
less, several recent efforts implement branch-and-
bound on GPU-based systems in the context of spe-
cific optimization problems (e.g., the knapsack prob-
lem [13, 31]). This section discusses some of the key
challenges in implementing optimization methods
like branch-and-bound on GPU systems and sum-
marizes some recent implementation efforts.

4.1 Challenges

Many of the key challenges outlined in section 3.1 are
also faced by GPU implementations of the bound-
and-branch method. Moreover, the irregular data
structures and data sharing required by this method
pose implementation challenges particular to GPU
architectures. For example, solving the LP relax-
ations takes a large fraction (97%-99%) of node pro-
cessing time [37] and there are known efficient GPU
implementations of the simplex method. However,
transferring data to and from the GPU may cost
more than the speed up achieved by executing this
computation on the GPU.

An additional challenge for GPU implementation
of branch-and-bound algorithms is the prevalence
of branching instructions. Despite recent hardware
developments, GPU architectures are known to be
highly sensitive to in-kernel branches which can lead
to thread divergence. Chakroun et al. [16] develop
efficient re-orderings of operations and data in the
branch-and-bound algorithm to reduce the number
of divergent instructions within each thread, achiev-
ing up to 7x speedup compared to a CPU-based par-
allel implementation.



4.2 Implementations

Prior GPU-based implementations of branch-and-
bound can be roughly divided into solutions which
combine CPU and GPU for execution of the algo-
rithm and solutions which use only GPU.
GPU-CPU. Lalami, et al. [11,31] present an early
implementation of branch-and-bound implementa-
tion of the knapsack problem with the branching and
bounding steps implemented as CUDA kernels while
the CPU executes the pruning operation. Due to the
expense of copying the active nodes back and forth
from GPU memory, they fall back on a CPU-only
implementation when the problem size falls below a
threshold. They report up to 10x speed up compared
with a parallel CPU implementation using randomly
generated problems.

In addition to the contributions towards reducing
thread divergence mentioned previously, Chakroun
et al. [15] propose an implementation of the flow-
shop problem using a branch-and-bound approach
which also executes the node pruning operation as
a GPU kernel. They also propose an implementa-
tion where the CPU and GPU work concurrently on
solving subproblems drawn from a common prob-
lem pool. While standard test problems are used for
evaluation, they only report speed up over a serial
implementation.

Vu et al. [49, 50] also implement a branch-and-
bound version of the flowshop problem, but tar-
get larger systems with tens of GPUs and hundreds
of CPUs. Their key contribution is the use of dy-
namic work stealing to efficiently distribute the un-
balanced tree across all available compute resources.
Using standard test problems, they report near opti-
mal speed up when varying the number of CPU and
GPU nodes available.
Pure GPU. While the efforts described above
make markable progress towards leveraging GPUs
for branch-and-bound implementation, they still suf-
fer from the bottleneck of transferring data to and
from GPU memory. To this end, Gmys et al. [26]
propose an implementation which executes all opera-
tions in the GPU and hence only requires data trans-
fer at the beginning and end of execution. The key
technique in their approach is the use of an Integer
Vector Matrix (IVM) representation of the branch-
and-bound problem tree rather than the linked-list
used in prior efforts. The IVM data structure it well-
adapted the GPU programming and memory mod-
els as it is constant in size and encourages better
locality. Similar to Vu et al., they implement work
stealing to balance load among GPU threads. They
demonstrate a 3.3x speed up over prior work [14]
using the same flowshop problem set.

Summary: The issues posed by un-balanced search
trees and information sharing between nodes con-
tinue to challenge GPU implementations of the
branch-and-bound algorithm. Recent work using
the Integer Vector Matrix representation of the
search tree enables pure-GPU implementations
which demonstrate promising speed ups. These ad-
vances in leveraging GPUs for optimization prob-
lems in general, and the branch-and-bound algo-
rithm in particular, expose the possibility of a GPU-
based MILP solver.

5 Conclusion

In this work, we provided an updated survey of the
implementation of MILP solvers on modern parallel
architectures. The key challenges faced by any par-
allel implementation are related to the un-balanced
search tree explored by the branch-and-bound algo-
rithm. To address these challenges, most implemen-
tations use some form of dynamic scheduling such
as master-worker or work stealing methods. Finally,
we discussed several recent works employing GPUs
for branch-and-bound-based optimization problems.
These efforts shed light on the potential use of GPUs
in MILP solvers. In particular, the Integer Vector
Matrix representation of the search tree provides a
promising path towards pure-GPU implementations
of such algorithms.
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