Survey on Heterogeneous Scientific Visualization
Algorithms and their Performance

Kristi Belcher

University of Oregon

Abstract- Heterogeneous computing is increasing in
popularity among researchers as the trend toward large
data continues. Research scientists have many options
when it comes to which architecture to run their codes
on. Determining the optimal architecture to run their
algorithms on is a critical consideration. Sometimes, it
may be best to run an algorithm on a combination
of more than one architecture. In particular, Scientific
Visualization researchers are faced with the need for more
compute power to process their simulation codes with
better performance. In this survey, I review several popular
heterogeneous implementations and investigate the impor-
tant trade-offs that must be factored in when deciding
to port an algorithm to a heterogeneous implementation.
The scope of the survey is limited to the field of Scientific
Visualization. Additionally, the main contribution is a
literature review of the implementations, advantages, and
challenges of heterogeneous computing. The results of
this study will help inform the Scientific Visualization
community about those architectures that give optimal
performance at certain stages of the simulation run.

I. INTRODUCTION

Scientific Visualization is the study of how to accurately
represent and understand data from scientific simulations.
One particular field within Scientific Visualization focuses
on Flow Visualization. This field is dedicated to visualizing
how massless particles move through some vector field. For
example, through flow analysis, we can understand how air
molecules react and move when a high velocity jet flies
through them. In particular, Particle Advection is an example
of a common flow visualization algorithm. Particle Advection
is a fundamental scientific visualization algorithm that calcu-
lates the displacement of particles along a velocity field. This
algorithm is a key element of flow analysis. Typically, particle
advection handles very large amounts of input data in order
to obtain an accurate result. Although Particle Advection is
such an important calculation for vector field visualization,
implementing an efficient large-scale parallel Particle Ad-
vection computation remains a challenge. Moreover, particle
trajectories can vary greatly depending on different parameters
set for the simulation. For example, termination criteria - those
rules that dictate when a particle stops moving through the
vector field - is user defined and thus can be very different
from one run to the next. These rules may involve particles
collecting in one particular spot in the field, going out of the

global domain, or reaching the maximum allowed advection
steps. Additionally, as simulations require more and more data
to produce meaningful results, visualization and analysis is
being performed in situ. This means that data is generated
and visualizations are performed as the simulation is running,
even using the same resources. Running large-scale Particle
Advection simulations on modern supercomputers has become
a requirement for efficient results in a reasonable amount of
time.

Modern supercomputers have varied computational capa-
bilities that make tailoring algorithms to those architectures a
priority. The supercomputers that researchers must work with
have widely differing architectures that range from modest
computational power to very high computational power, with
several architectures that lie in between. Because of this
trend, it is important to take into consideration the kind of
architecture that a simulation code will be run on. Sometimes,
however, it is not as simple as just picking one of these kinds
of architectures for a specific code. In order to more effectively
harness the computation power available on a supercomputer,
many research scientists are utilizing several different kinds of
architectures at one time, during the same run of a simulation
code. Using more than one kind of architecture to compute
data and solve a problem is referred to as heterogeneous, or
hybrid, computation. Heterogeneous computation requires that
researchers tailor their codes to two (or more in some cases)
architectures at a time. The result of utilizing heterogeneous
computations vary depending upon several factors such as
problem size, algorithm, and architecture [KK11]. In order
to obtain the kind of performance results desired by domain
scientists, these factors must be understood and optimally
tuned. Previous studies [MV15] have been conducted to better
understand heterogeneous computing and those techniques
which can give algorithms optimal performance. This survey
draws upon previous studies to create a deeper understanding
by focusing on heterogeneous computing in the field of
Scientific Visualization. The purpose of this survey is in fact
to provide a detailed summary of current heterogeneous com-
puting research, and specifically how it is used for Scientific
Visualization.

The scope of this survey is limited to scientific visualization
with an emphasis on flow visualization. The goals of this
survey are listed below.

« To summarize why heterogeneous parallel algorithms are
needed and discuss the trend toward large-scale simula-
tions.

Fig. 1. A picture of both the Astrophysics data set simulation.

Fig. 2. A picture of both the Hydraulics data set simulation.

o To review previous works that have compared different
architectures in a large data setting.

o To analyze different works which have studied various
hybrid parallelization techniques in a flow visualization
context.

o To make conclusions given the information discussed and
provide next steps for future research.

II. MOTIVATION AND BACKGROUND

To provide some motivation for why exploration into hetero-
geneous Computing is worthwhile, a Top 5 supercomputer (as
of 2019 [Jac19]) is introduced and a couple of motivating ex-
amples are provided. Supporting the trend toward big data, one
of the Top 5 supercomputers, Summit, at Oak Ridge National
Laboratory (ORNL) was built with about 4600 compute nodes,
each with IBM POWERSY processors and 6 NVIDIA Volta
V100 GPUs[sum19]. Like the other Top 5 supercomputers, this
top-of-the-line machine was created to process large amounts
of data at ever-increasing speeds because of the need for more
compute capability.

These supercomputing trends are fueled by scientific re-
search that uses increasingly large amounts of data to get
scalable and accurate results that are used to answer important
questions. For example, large amounts of data are used to
simulate the magnetic field surrounding a solar core collapse
which results in a supernova to answer pressing questions in
Astrophysics [ECBMO08]. Figure 1 shows the visualization of
such a simulation. Additionally, another simulation of interest
is a thermal hydraulics data set that demonstrates what happens
when two equally sized tubes pump water into a box with
a temperature difference between the water inserted by each
tube; eventually the water exits through an outlet. The mixing
behavior and the temperature of the water at the outlet of the
box are of interest because it gives insight into the impact
of unequal heat exchange resulting in non-optimal mixing
[PIDAOS8]. Figure 2 shows the resulting visualizations from
these simulations. Because of these trends, research scientists
are studying the performance impact of using accelerators on
Supercomputers to do these simulations. When only using

accelerators like the GPU are not enough, these researchers
turn toward heterogeneous computing in order to utilize more
of the system resources available.

The motivation behind this is centered around the idea that
while the accelerator is busy doing computation, the CPUs
available could also be doing a portion of the total work. Ad-
ditionally, sometimes the current workload of the simulation is
better for the accelerator (i.e. when it can be fully loaded with
plenty of data parallel work), while other times the CPU may
be better suited (i.e. when there is just a few computations left
to do). Perhaps the most important reason why heterogeneous
computation is worth exploring in the context of Scientific
Visualization is for improving interactive visualization where
even just one or two saved seconds really counts. With this
in mind, researchers look toward heterogeneous computing to
achieve better performance and resource utilization in their
scientific visualization simulations.

III. RESEARCH REVIEW

In this section, a wide range of hybrid, or heterogeneous,
computation research is discussed and reviewed. First, the
overall groundwork is laid out with various previous works
studying different workloads that are best suited for a target ar-
chitecture. Then, several hybrid implementations are explained
including MPI-Hybrid works, hardware-agnostic works, and
those previous works that lie somewhere in between. Next,
challenges to hybrid computing are discussed. Lastly, the
discussed body of research is summarized and concluded.

A. Architecture Study

Camp et al. [CKP*13] did an extensive study where various
workloads were tested on both the CPU and the accelerator
(in this case, a GPU). The study was done exclusively with a
Particle Advection algorithm where they varied the number of
particles computed and the number of steps for each particle.
In the study, they show what kinds of workloads result in better
CPU performance and which kinds resulted in better GPU
performance. They conclude that in those workloads with very
large particle counts, the GPU had much better performance.
As expected, they also conclude that those workloads with
very small particle counts resulted in better performance with
the CPU. However, for workloads with a medium-amount
of particles, the step size really matters when determining
if the CPU or GPU would get better performance. The key
to determining which targeted architecture would give better
performance is whether or not the accelerator could be fully
loaded. If the workload could take advantage of the GPU’s
bandwidth and computational power, then the GPU would give
better results. Accordingly, if the workload could better take
advantage of the CPU’s latency, then the CPU would give
better results. For example, if there were 1000 particles that
needed to be advected for 5000 steps, then the model from
Camp et al. predicted that the CPU would be better for that
workload. If there were 5000 particles that need to be advected
for 1000 steps, then the model predicted that the GPU would
be better suited for this workload. These results inspire how a
heterogeneous implementation of particle advection could be

done which would bring both architectures together to work
on the problem.

Other works also define the workloads that are best suited
for a target architecture. Wu et al. [WTYHI18] describe how
they tuned their fluid simulation algorithm for the GPU.
They go in to detail on how they constructed sparse grids
to promote fast incremental updates during computation. This
technique was designed to take full advantage of the GPU’s
hardware in an effort to hide latency. For example, since their
fluid simulation algorithm requires neighborhood stencil look-
ups, they created a technique that rebuilds the stencil while
efficiently utilizing thread blocks and data coherence in order
to keep the entire computation on the GPU. The efficient GPU
memory management described in their paper removes the
need for extra memory transfers, keeping the algorithm GPU-
friendly.

Additionally, Chen et al. [CSH16] also describe how they
reimplemented a Particle Advection algorithm to better per-
form on the GPU by taking advantage of asynchronous
computation. They also describe how they localized memory
accesses on the GPU to overcome cache misses. Further-
more, they described their novel redesign of the Runge-Kutta
computation, the main Particle Advection computation that
calculates how a particle moves from one location to the
next, by splitting it into multiple stages to reduce register
utilization. Overall, this previous work lays the groundwork
for determining how to best port a single-target architecture
implementation to a hybrid one by understanding the optimal
workloads for a particular architecture and describing different
code optimizations that make code better suited for a particular
device.

B. Distributed Memory Heterogeneous Computation

MPI is the Message Passing Interface that enables dis-
tributed memory parallel computing. Many researchers have
used MPI to obtain the benefits of heterogeneous computing
on large parallel systems like supercomputers. By explor-
ing these previous works, it becomes apparent that utilizing
distributed memory heterogeneous computation enables very
large datasets to be processed, especially those datasets which
were previously too large to fit into system memory.

First, to understand workloads suited for distributed memory
computations, Camp et al. [CKP*13] also studied those work-
loads which favored a GPU distributed memory environment
compared to those workloads that favored a CPU distributed
memory environment. This work is in addition to the work
previously described by Camp et al. in the section above. With
this study, researchers can better understand the kind of work-
load characteristics needed in order for good performance.
However, note that the scope of this work did not include
a study of workloads that favor a heterogeneous distributed
memory environment. The experiments done by Camp et al.
were either processed by only the GPU or only the CPU (In the
GPU case, the CPU was only used for memory transfers, etc.
The CPU was not used for any of the computations). Even still,
this work laid the foundation for understanding what kinds of
workload characteristics are best for CPU or GPU distributed
memory environments.

Processor 0 Processor 1 Processor 2

./"\‘\ °
|

o)
/‘Jg \\ | |

Parallelize-over-Particle

Parallelize-over-Data

Fig. 3. An example of two parallelization techniques for Stream Surface
Computation

Next, a different work by Camp et al. [CCG*12] studied
two different types of parallelization techniques for a Stream
Surface Computation algorithm. Stream Surface Computation
is another very common Flow Visualization algorithm which
typical is given very large datasets to process. Thus, Camp et
al. studied the performance of two parallelization techniques
when implemented in a MPI Parallel environment. Like Par-
ticle Advection, the Stream Surface Computation calculates
on how particles move through a space. Hence, the two paral-
lelization techniques included parallelize-over-particles where
each MPI task is assigned a fixed number of particles and
performs all the computations related to those particles until
they eventually terminate. The other parallelization technique
was parallelize-over-data where each MPI task is assigned
a piece of the domain, and only performs computations on
particles that exist within that sub-domain.

Figure 3 gives a visual representation of these two tech-
niques. Camp et al. found that the parallelize-over-particles
method had the advantage of better load-balance since each
MPI task was assigned an equal number of particles, but the
disadvantages included the I/O cost since communication of
where particles move was done as needed. Moreover, the I/O
cost can vary greatly depending on the seeding conditions
(where the particles are initially placed) and conditions of the
vector field (the values that dictate where the particles go).
On the other hand, parallelize-over-data had the advantage
of performing minimal I/O between MPI tasks, but could be
severely impacted by load-imbalance between tasks. Again,
the load-imbalance depends on the data layout and is very
problem-dependent. Camp et al. summarized their work by
pointing out that the biggest factor to distributed memory
performance is load-imbalance. They also mentioned further
study into caching strategies to help with data transfers be-
tween tasks. Overall, by studying the performance advantages
and disadvantages of these two implementations, researchers
can better understand what kinds of parallelization strategies
perform best in a distributed memory environment.

Similarly, Pugmire et al. [PCG*09] also studied Streamline
Computations of very large datasets and how well this algo-
rithm scaled. They compare the previous two parallelization
strategy to a novel hybrid strategy which aims to achieve

optimal load balance while also minimizing I/O cost with over-
all good scalability. In their MPI-hybrid implementation, they
attempt to alleviate load-imbalance by dynamically assigning
streamlines and data blocks (i.e. sub-domains) to processors.
Their Master-Slave algorithm attempts to keep processors busy
as much as possible by communicating streamlines when
needed, and performing computations otherwise. In other
words, the Master assigns the work as it becomes available
and keeps track of progress, while the Slave receives the work
and performs necessary computations. As both the Master and
the Slave work simultaneously, the Master is making sure that
each Slave has roughly equal amounts of work, modifying the
work queue for the Slaves accordingly. More details on this
complex algorithm is provided in the paper. Overall, this study
shows a load-balanced MPI-Hybrid implementation that uses
Master-Slave processor parallelization technique to solve the
problem. The algorithm introduced in this work leverages both
MPI processes and the Master-Slave technique to harness the
Hybrid performance advantage.

Additionally, in a different work, Camp et al. [CGC*11]
study the performance between an MPI-only implementation
and a MPI-Hybrid implementation. This work provides insight
in to how and under what circumstances MPI-Hybrid algo-
rithms can provide performance benefits. The difference be-
tween this work and the previously described work by Pugmire
et al. is that for this MPI-Hybrid implementation, the algorithm
uses both MPI and OpenMP so that both distributed memory
and shared memory environments are used. Additionally, this
work implemented a parallelize-over-particles and parallelize-
over-data MPI-only and MPI-Hybrid implementation. Camp
et al. found that both implementations performed better in
the MPI-Hybrid setting. In fact, the parallelize-over-particles
MPI-Hybrid implementation benefited most from improved
caching. The improved caching ability lead to better 1/O
performance. This implementation also had better distribution
of faster versus slower streamlines to calculate, thus leading
to better load balancing. Moreover, the parallelize-over-data
MPI-Hybrid implementation benefited most from increased
parallel efficiency due to better distribution of the data as-
signed to MPI tasks. This implementation also benefited from
lower communication costs since the OpenMP threads could
share data within the data block. Overall, this work illustrates
the performance benefits of using MPI-Hybrid approaches.

At the same time, key performance factors like load bal-
ancing and data distribution are shown to play a large role in
overall performance. This will be explained further in future
sections.

C. Hardware-Agnostic frameworks

In the field of Scientific Visualization, among others, it
became apparent that with large data trends and the need for
better performance, multiple architectures would be needed.
While some algorithms would be better suited for some kind
of CPU parallelization strategy like OpenMP, others might
be best suited for an accelerator like the GPU. Still others
may be best suited for a distributed network using MPI. Then
again, with concerns of portability, Visualization researchers

Algorithm 3

Algorithm 1 Algorithm 2 .

Fig. 4. A picture of how each algorithm must be ported to each architecture.

.

_____.r--""{-'-- /// \\\\ -----7-_""'--7.._____
,..»""'- Vi ™ -'""--..,__
Algorithm 1 Algorithm 2 Algorithm 3 S Algorithm n

Fig. 5. A picture of how with VTKm, each algorithm only has to be mapped
once to VTKm.

worried that there would be a future architecture that would be
best for a particular algorithm. For example, Summit currently
has NVIDIA GPUs which run with CUDA, yet Frontier, the
next generation computer, will have AMD GPUs which do not
run on CUDA. Researchers realized that one possible solution
would be to port every existing algorithm to several different
architectures to test which is best. In an effort not to undergo
that kind of extensive development which may or may not
pay off, a different solution, a hardware-agnostic solution,
was created. To help ease the transition of efficiently porting
algorithms to multiple kinds of hardware, several frameworks
have been created to provide a hardware agnostic environment
that acts as a bridge between several different platforms. These
frameworks are described below.

1) VTK-m Framework: VTK-m [MSU*16] is an extension
of VTK, the Visualization Tool-Kit, with the addition of
several many-core (hence the 'm’ in VTK-m) implementations
for common visualization algorithms. In short, VTK-m was
created to provide the same functionalities as VTK, but with
the inclusion of achieving portable performance across a
variety of many-core and multi-core architectures.

Figure 4 and 5 shows a visual representation of how VTK-
m can be used. Note that in (a) a developer must implement
several versions of the application code: one for each desired
hardware platform. In (b), the developer only has to implement
one VTK-m program to be able to utilize any compatible
architecture. VTK-m creates a hardware agnostic environment
using Data Parallel Primitives (DPPs). In 1990, Blelloch
[B1e90] proposed a model where specific operations could be
carried out on vectors of size N in O(log(N) time in the worst
case. Blelloch describes DPPs such as Scan, Scatter, Map,
Reduce, and Gather used in libraries like NVIDIA’s Thrust
library. Since The Thrust library uses DPPs, it can be compiled

to work across a variety of parallel architectures.

Additionally, DPPs are also used as the basis for different
performance-portable libraries like VTK-m. Using DPPs for
performance portability requires that developers re-think their
algorithms, which can be a difficult task. This remains one of
the more difficult hurdles in the process of rewriting algorithms
in VTK-m.

VTK-m is a hardware agnostic solution for implementing
key visualization algorithms across a wide range of platforms.
As modern supercomputers are equipped with a wider range
of hardware varieties, from programmable graphics processors
(GPUs) and many-core co-processors (Intel Xeon Phi) to
large multi-core CPUs, a growing concern for Visualization
software developers remains providing optimized software that
can employ many different algorithms. As such, VTK-m helps
alleviate this problem, providing software developers with the
ability to write a single implementation of their code and have
it run on a variety of architectures obtaining excellent per-
formance on each distinct platform. VTK-m supports general
portability across a wide variety of architectures, thus making
portable performance possible.

Works such as Pugmire et al. [PYK*18] use VTK-m to
parallelize Particle Advection in order to demonstrate per-
formance portability across various architectures. This work
shows that VTK-m is a viable solution because it offers
a performant solution that, once parallelized with VTK-m,
takes little to no code modification in order to be efficiently
ported to a different architecture. Other works from Childs
et al. [CBP*14], Lessley et al. [LBMC16], and Larsen et al.
[LLN*15] all show that by using VTK-m, they can achieve
portable performance in a hardware-agnostic setting. Childs
et al. [CBP*14] compared distributed-memory GPU clusters
to distributed-memory CPU clusters in order to demonstrate
heterogeneous performance portability with Particle Advec-
tion. This work provides insight on the types of workloads
that are best suited for a target architecture in a distributed
memory (and thus heterogeneous) setting. Childs et al. lays
the foundation for future work (see section below) to combine
a distributed memory environment (provided by MPI) with
shared memory (std threads) and an accelerator (the GPU).
Both Lessley et al. and Larsen et al. show that VTK-m is a
viable solution for portable performance with large datasets.
In the field of Scientific Visualization, research has shown that
VTK-m is a viable solution for porting algorithms easily from
one architecture to the next.

2) Kokkos and RAJA Frameworks: The Kokkos [ET18]
and RAJA [HB18] frameworks are also options for hardware-
agnostic computation. Although these frameworks are worth
mentioning because they offer a performance-portable,
hardware-agnostic environment, they are mostly outside the
scope of this survey because they are not specific to the
Scientific Visualization field. However, when using these
frameworks, a developer can implement one Kokkos or RAJA
program which can be targeted for any supported architecture,
similar to VTK-m development.

D. Challenges for Heterogeneous Computation

From studying and reviewing the related works surrounding
heterogeneous computation, there are a number of factors that
may limit the performance benefit of Hybrid execution. The
purpose of this section is to list those conditions and give some
explanation behind each one.

e Make sure there is sufficient data: In order for a
heterogeneous algorithm to perform well, there must
be enough computation available. The more hardware
utilized the more parallelism that needs to be exposed
and exploited from the data. If an algorithm doesn’t have
enough work, then there may not be any performance
benefit and therefore the entire effort is just wasted.

o Make sure the architecture is compatible: Some al-
gorithms are not suitable for certain architectures and
thus should be avoided on that particular device. For
example, recursion has been shown to not be performant
on GPU architectures [KHN12]. Therefore, if a particular
algorithm uses recursion, it would be unwise to port that
algorithm to a heterogeneous environment where GPUs
are involved. The exception to this criteria being if the
programmer can cleverly remove the problematic code (in
this case, the recursion) in the algorithm before porting
it to the target architecture.

o Make sure performance gain is worth programmer
effort: If the time and effort involved in creating an
efficient heterogeneous implementation for a particular
algorithm outweighs the performance benefit, then it may
be the case that a different parallelization strategy should
be used instead. This is largely problem-dependent, but
programmers should make sure that the time and cost of
implementing a heterogeneous version of the algorithm
will pay off by considering factors like available paral-
lelism, hardware resources, etc.

o Make sure the other factors mentioned in previous
works are weighed in: Previous research mentioned par-
allelization strategy (i.e. parallelize-over-particles versus
parallelize-over-data), load imbalance, communication,
and idle time as factors that should be considered when
implementing a heterogeneous algorithm. On the other
hand, there are different approaches that use Information
Gain and Entropy to predict blocks that will have more
data versus those that will have few to no particles.
Marsaglia et. al. [MLB*19] created an approach to calcu-
late those blocks that contained more important data, and
then used that information to assign blocks to MPI ranks.
Miiller et. al. [MCHGI13] proposed a work-requesting
scheduling scheme which alleviated much of the load
imbalance problem of POB. In their approach, blocks
are assigned to nodes and when one node runs out of
work to do on its assigned block, it sends a message to a
neighboring block requesting half of its remaining work.
Previous work from researchers such as Pugmire et al.
[PYK*18], Binyahib et al. [BPL*19], and Childs et al.
[CBP*14] all describe how they overcame these kinds of
setbacks. Overall, these considerations are important for
ensuring that the heterogeneous version will perform well

when multiple architectures are used together.

Heterogeneous computation will inevitably have challenges
that programmers must overcome. By studying ways to work
around these challenges, mitigate them, or otherwise resolve
those setbacks, programmers will be able to implement het-
erogeneous algorithms that can provide more optimal perfor-
mance benefits.

E. My Research

My current research builds off of the work described in this
survey. For my study, a VTK-m Particle Advection algorithm
uses a parallelization-over-data approach with MPI. In this
algorithm, the domain is divided into N pieces in which each
of the N MPI tasks is assigned to a piece of the total problem.
A particular MPI task will calculate particle trajectories on its
piece of the domain until its assigned particles terminate or
advect outside of its piece of the domain. Here, a MPI task
will fork three shared memory std threads: one manager thread
for communication and for keeping track of overall progress
and two worker threads to advect particles given to it by the
manager. If a particle does travel beyond a MPI task’s domain
to another piece, it is communicated (by the manager thread) to
whatever MPI task owns that piece of the domain. This process
repeats until all particles have terminated. Additionally, using
a VTK-m feature, one worker thread is dedicated to the CPU
while the other is dedicated to the GPU. In this way, the worker
thread is only able to advect particles on that specific hardware.

The main idea is that the manager will determine when to
use the accelerator (in this case a NVIDIA GPU) and when to
use the CPU to process the remaining work, adding that work
to the appropriate worker thread’s queue. The manage thread
does this by asking an “oracle” if the current workload is
better suited for a GPU or a CPU. The oracle acts like a black
box, telling the manager to use the GPU when appropriate
and then telling the manager to switch to the CPU when the
workload can no longer take advantage of the GPU’s hardware.
As before, the workers are relatively simplistic, only advecting
particles as work is sent to them. The manager thread simply
needs to give the appropriate work to the appropriate worker.

Next, my algorithm’s performance is compared to a CPU-
only and GPU-only version. Although my research is still in
progress, I generally see that my algorithm’s runtimes can be
summarized as r ~ min (7., Ty), where r is the runtime for
my algorithm, T is the runtime for the CPU-only version, and
T, is the runtime for the GPU-only version. In some cases, I
see that my algorithm is faster than both of the other versions,
but I am still trying to understand why and the conditions in
which this most likely will happen. When I have completed
my experiments, I will create some kind of model to represent
the performance of my algorithm so that the results of my
work can be used more broadly by researchers in the Scientific
Visualization field.

The goal of my work is to study and model how a
heterogeneous environment like the one described above can
benefit performance and in what types of circumstances. From
results from previous works, it is important that great care
go in to creating an oracle that picks a device depending

upon the characteristics of the current workload. In effect,
our work explores the fundamental research question: If faced
with a Particle Advection problem, can a heterogeneous
implementation perform better than an implementation
that runs the entire workload on either the CPU or the
GPU?

IV. CONCLUSIONS AND FUTURE WORK

This survey discussed the current body of work surrounding
heterogeneous scientific visualization algorithms. By describ-
ing the current research in this field, it is apparent that hetero-
geneous computing is a viable option as simulations handle
increasingly large amounts of data. Some researchers have
implemented hybrid algorithms which use both distributed
and shared memory as a way to try and achieve maximal
utilization of system resources to solve this problem. Others
have relied on hardware agnostic frameworks like VTK-m to
reach a hybrid solution with minimal to no code changes. Yet
another approach utilizes both CPUs and available accelerators
to make sure that the targeted architecture is best suited for
the current workload. Additionally, research focused on using
a combination of two or more of these techniques is also
discussed. A comparison of results from various different types
of hybrid flow visualization implementations demonstrates the
current body of research that many scientists rely on as the
trend toward larger and larger data simulations continues.

Overall, this survey leads to the conclusion that although
many researchers are trying to find performant heterogeneous
solutions, more work still needs to be done to complete our
understanding of heterogeneous performance. Future works
revolve around scalability and portability issues of these
heterogeneous algorithms.

REFERENCES
[Bl1e90] BLELLOCH G.:. In Vector Models for Data-Parallel Computing
(1990), vol. 356, MIT Press.
BINYAHIB R., PETERKA T., LARSEN M., MA K.-L., CHILDS
H.: A Scalable Hybrid Scheme for Ray-Casting of Unstructured
Volume Data. IEEE Transactions on Visualization and Computer
Graphics 25, 7 (July 2019), 2349-2361.
CHILDS H., BIERSDORFF S., POLIAKOFF D., CAMP D., MAL-
ONY A. D.: Particle Advection Performance Over Varied Archi-
tectures and Workloads. In [EEE International Conference on
High Performance Computing (HiPC) (Goa, India, Dec. 2014),
pp. 1-10.
CAMP D., CHILDS H., GARTH C., PUGMIRE D., Joy K. I.:
Parallel Stream Surface Computation for Large Data Sets. In
Proceedings of IEEE Symposium on Large Data Analysis and
Visualization (LDAV) (Seattle, WA, Oct. 2012), pp. 39-47.
CAMP D., GARTH C., CHILDS H., PUGMIRE D., Joy K.:
Streamline integration using mpi-hybrid parallelism on a large
multicore architecture. [EEE transactions on visualization and
computer graphics 17 (11 2011), 1702-13.
CAMP D., KRISHNAN H., PUGMIRE D., GARTH C., JOHNSON
I., BETHEL E. W., Joy K. I., CHILDS H.: GPU Acceleration of
Particle Advection Workloads in a Parallel, Distributed Memory
Setting. In Proceedings of EuroGraphics Symposium on Paral-
lel Graphics and Visualization (EGPGV) (Girona, Spain, May
2013), pp. 1-8.
CHEN M., SHADDEN S. C., HART J. C.: Fast coherent par-
ticle advection through time-varying unstructured flow datasets.
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER
GRAPHICS 22, 8 (Aug 2016).

[BPL*19]

[CBP*14]

[CCG*12]

[CGC*11]

[CKP*13]

[CSH16]

[ECBMOS]

[ET18]
[HB18]

[Jac19]
[KHN12]

[KK11]

[LBMC16]

[LLN*15]

[MCHG13]

[MLB*19]

[MSU*16]

[MV15]

[PCG*09]

[PIDAOS]

[PYK*18]

[sum19]

[WTYHI8]

ENDEVE E., CARDALL C. Y., BUDIARDJA R. D., MEZZA-
CAPPA A.: Generation of strong magnetic fields in axisymmetry
by the stationary accretion shock instability.

ELLINGWOOD N., TROTT C. R.: Kokkos Tutorial. Tech. rep.,
Sandia National Lab, 2018.

HORNUNG R., BECKINGSALE D.: A Tutorial Introduction to
RAJA. Tech. rep., Lawrence Livermore National Lab, 2018.
JACKSON K.: The five fastest supercomputers in the world.
KiMm J., HONG S., NAM B.: A performance study of traversing
spatial indexing structures in parallel on gpu. In 2012 IEEE
14th International Conference on High Performance Computing
and Communication 2012 IEEE 9th International Conference on
Embedded Software and Systems (June 2012), pp. 855-860.
KUNZMAN D. M., KALE L. V.: Programming heterogeneous
systems. In [EEE International Parallel and Distributed Pro-
cessing Symposium (2011).

LESSLEY B., BINYAHIB R., MAYNARD R., CHILDS H.: Exter-
nal facelist calculation with data-parallel primitives. In Proceed-
ings of the 16th Eurographics Symposium on Parallel Graphics
and Visualization (Goslar Germany, Germany, 2016), EGPGV
’16, Eurographics Association, pp. 11-20.

LARSEN M., LABASAN S., NAVRATIL P., MEREDITH J. S.,
CHILDS H.: Volume rendering via data-parallel primitives. In
Proceedings of the 15th Eurographics Symposium on Parallel
Graphics and Visualization (Aire-la-Ville, Switzerland, Switzer-
land, 2015), PGV ’15, Eurographics Association, pp. 53-62.
MULLER C., CAMP D., HENTSCHEL B., GARTH C.: Distributed
parallel particle advection using work requesting. In 2013 IEEE
Symposium on Large-Scale Data Analysis and Visualization
(LDAV) (Oct 2013), pp. 1-6.

MARSAGLIA N., L1 S., BELCHER K., LARSEN M., CHILDS
H.: Dynamic I/O Budget Reallocation For In Situ Wavelet
Compression. In Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV) (Porto, Portugal, June 2019), pp. 1-
6.

MORELAND K., SEWELL C., USHER W., LO L., MEREDITH
J., PUGMIRE D., KRESS J., SCHROOTS H., MA K.-L., CHILDS
H., LARSEN M., CHEN C.-M., MAYNARD R., GEVECI B.:
VTK-m: Accelerating the Visualization Toolkit for Massively
Threaded Architectures. IEEE Computer Graphics and Appli-
cations (CG&A) 36, 3 (May/June 2016), 48-58.

MITTAL S., VETTER J. S.: A survey of cpu-gpu heterogeneous
computing techniques. ACM Computing Surveys (2015).
PUGMIRE D., CHILDS H., GARTH C., AHERN S., WEBER
G. H.: Scalable Computation of Streamlines on Very Large
Datasets. In Proceedings of the ACM/IEEE Conference on High
Performance Computing (SC09) (Portland, OR, Nov. 2009).

P. F, J. L., D. P, A. S.: Petascale algorithms for reactor
hydrodynamics. Journal of Physics: Conference Series 125
(2008), 1-5.

PUGMIRE D., YENPURE A., KIM M., KRESS J., MAYNARD
R., CHILDS H., HENTSCHEL B.: Performance-Portable Particle
Advection with VTK-m. In Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV) (Brno, Czech Republic,
June 2018), pp. 45-55.

Summit User Guide. Tech. rep., Oak Ridge National Lab
Leadership Computing Facility, https://www.olcf.ornl.gov/for-
users/system-user-guides/summit/summit-user-guide/, 2019.

Wu K., TRUONG N., YUKSEL C., HOETZLEIN R.: Fast fluid
simulations with sparse volumes on the gpu. vol. 37.

